Comparative research on network intrusion detection methods based on machine learning

C Zhang, D Jia, L Wang, W Wang, F Liu, A Yang - Computers & Security, 2022 - Elsevier
Network intrusion detection system is an essential part of network security research. It
detects intrusion behaviors through active defense technology and takes emergency …

Physics-informed neural network (PINN) evolution and beyond: A systematic literature review and bibliometric analysis

ZK Lawal, H Yassin, DTC Lai, A Che Idris - Big Data and Cognitive …, 2022 - mdpi.com
This research aims to study and assess state-of-the-art physics-informed neural networks
(PINNs) from different researchers' perspectives. The PRISMA framework was used for a …

A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications

L Alzubaidi, J Bai, A Al-Sabaawi, J Santamaría… - Journal of Big Data, 2023 - Springer
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a
large amount of data to achieve exceptional performance. Unfortunately, many applications …

IGRF-RFE: a hybrid feature selection method for MLP-based network intrusion detection on UNSW-NB15 dataset

Y Yin, J Jang-Jaccard, W Xu, A Singh, J Zhu… - Journal of Big Data, 2023 - Springer
The effectiveness of machine learning models can be significantly averse to redundant and
irrelevant features present in the large dataset which can cause drastic performance …

A Q-Learning-based distributed routing protocol for frequency-switchable magnetic induction-based wireless underground sensor networks

G Liu - Future Generation Computer Systems, 2023 - Elsevier
Abstract Magnetic Induction (MI) based Wireless underground sensor networks (WUSNs)
consist of magnetic-antenna sensors that are buried in and communicate through soil …

Securing industrial control systems: components, cyber threats, and machine learning-driven defense strategies

M Nankya, R Chataut, R Akl - Sensors, 2023 - mdpi.com
Industrial Control Systems (ICS), which include Supervisory Control and Data Acquisition
(SCADA) systems, Distributed Control Systems (DCS), and Programmable Logic Controllers …

Deep learning in the fast lane: A survey on advanced intrusion detection systems for intelligent vehicle networks

M Almehdhar, A Albaseer, MA Khan… - IEEE Open Journal …, 2024 - ieeexplore.ieee.org
The rapid evolution of modern automobiles into intelligent and interconnected entities
presents new challenges in cybersecurity, particularly in Intrusion Detection Systems (IDS) …

Deep SARSA-based reinforcement learning approach for anomaly network intrusion detection system

S Mohamed, R Ejbali - International Journal of Information Security, 2023 - Springer
The growing evolution of cyber-attacks imposes a risk in network services. The search of
new techniques is essential to detect and classify dangerous attacks. In that regard, deep …

Deep reinforcement learning for anomaly detection: A systematic review

K Arshad, RF Ali, A Muneer, IA Aziz, S Naseer… - IEEE …, 2022 - ieeexplore.ieee.org
Anomaly detection has been used to detect and analyze anomalous elements from data for
years. Various techniques have been developed to detect anomalies. However, the most …

Breast cancer classification using Deep Q Learning (DQL) and gorilla troops optimization (GTO)

S Almutairi, S Manimurugan, BG Kim… - Applied Soft …, 2023 - Elsevier
Breast cancer (BC) is a primary reason for death among the female population around the
world. Early identification can aid in decreasing the mortality rates associated with this …