Uncertainty Calibration with Energy Based Instance-Wise Scaling in the Wild Dataset

M Kim, J Kwon - European Conference on Computer Vision, 2025 - Springer
With the rapid advancement in the performance of deep neural networks (DNNs), there has
been significant interest in deploying and incorporating artificial intelligence (AI) systems …

Distance-aware Calibration for Pre-trained Language Models

A Gasparin, G Detommaso - Findings of the Association for …, 2024 - aclanthology.org
Abstract Language Models for text classification often produce overconfident predictions for
both in-distribution and out-of-distribution samples, ie, the model's output probabilities do not …

Efficient Nearest Neighbor based Uncertainty Estimation for Natural Language Processing Tasks

W Hashimoto, H Kamigaito, T Watanabe - arXiv preprint arXiv:2407.02138, 2024 - arxiv.org
Trustworthy prediction in Deep Neural Networks (DNNs), including Pre-trained Language
Models (PLMs) is important for safety-critical applications in the real world. However, DNNs …

Optimizing Calibration by Gaining Aware of Prediction Correctness

Y Liu, L Wang, Y Zou, J Zou, L Zheng - arXiv preprint arXiv:2404.13016, 2024 - arxiv.org
Model calibration aims to align confidence with prediction correctness. The Cross-Entropy
CE) loss is widely used for calibrator training, which enforces the model to increase …

Pseudo-Calibration: Improving Predictive Uncertainty Estimation in Domain Adaptation

D Hu, J Liang, X Wang, CS Foo - openreview.net
Unsupervised domain adaptation (UDA) has seen significant efforts to enhance model
accuracy for an unlabeled target domain with the help of one or more labeled source …

近傍事例との距離重み付けSoftmax 関数を用いた不確実性推定

橋本航, 上垣外英剛, 渡辺太郎 - 人工知能学会全国大会論文集第38 回 …, 2024 - jstage.jst.go.jp
抄録 深層学習モデルの予測の信頼性が高いことは, 実世界で高い安全性が必要とされる領域で
応用するために重要である. しかし, 深層学習モデルには実際の正解率と予測された信頼度の乖離 …