Spiking neural networks and their applications: A review

K Yamazaki, VK Vo-Ho, D Bulsara, N Le - Brain Sciences, 2022 - mdpi.com
The past decade has witnessed the great success of deep neural networks in various
domains. However, deep neural networks are very resource-intensive in terms of energy …

Towards spike-based machine intelligence with neuromorphic computing

K Roy, A Jaiswal, P Panda - Nature, 2019 - nature.com
Guided by brain-like 'spiking'computational frameworks, neuromorphic computing—brain-
inspired computing for machine intelligence—promises to realize artificial intelligence while …

Exploring neuromorphic computing based on spiking neural networks: Algorithms to hardware

N Rathi, I Chakraborty, A Kosta, A Sengupta… - ACM Computing …, 2023 - dl.acm.org
Neuromorphic Computing, a concept pioneered in the late 1980s, is receiving a lot of
attention lately due to its promise of reducing the computational energy, latency, as well as …

A survey of encoding techniques for signal processing in spiking neural networks

D Auge, J Hille, E Mueller, A Knoll - Neural Processing Letters, 2021 - Springer
Biologically inspired spiking neural networks are increasingly popular in the field of artificial
intelligence due to their ability to solve complex problems while being power efficient. They …

Slayer: Spike layer error reassignment in time

SB Shrestha, G Orchard - Advances in neural information …, 2018 - proceedings.neurips.cc
Abstract Configuring deep Spiking Neural Networks (SNNs) is an exciting research avenue
for low power spike event based computation. However, the spike generation function is non …

[HTML][HTML] Deep learning with spiking neurons: opportunities and challenges

M Pfeiffer, T Pfeil - Frontiers in neuroscience, 2018 - frontiersin.org
Spiking neural networks (SNNs) are inspired by information processing in biology, where
sparse and asynchronous binary signals are communicated and processed in a massively …

Direct training for spiking neural networks: Faster, larger, better

Y Wu, L Deng, G Li, J Zhu, Y Xie, L Shi - Proceedings of the AAAI …, 2019 - ojs.aaai.org
Spiking neural networks (SNNs) that enables energy efficient implementation on emerging
neuromorphic hardware are gaining more attention. Yet now, SNNs have not shown …

Rmp-snn: Residual membrane potential neuron for enabling deeper high-accuracy and low-latency spiking neural network

B Han, G Srinivasan, K Roy - Proceedings of the IEEE/CVF …, 2020 - openaccess.thecvf.com
Abstract Spiking Neural Networks (SNNs) have recently attracted significant research
interest as the third generation of artificial neural networks that can enable low-power event …

Deep learning in spiking neural networks

A Tavanaei, M Ghodrati, SR Kheradpisheh… - Neural networks, 2019 - Elsevier
In recent years, deep learning has revolutionized the field of machine learning, for computer
vision in particular. In this approach, a deep (multilayer) artificial neural network (ANN) is …

[HTML][HTML] Enabling spike-based backpropagation for training deep neural network architectures

C Lee, SS Sarwar, P Panda, G Srinivasan… - Frontiers in …, 2020 - frontiersin.org
Spiking Neural Networks (SNNs) have recently emerged as a prominent neural computing
paradigm. However, the typical shallow SNN architectures have limited capacity for …