Deep learning for time series classification and extrinsic regression: A current survey

N Mohammadi Foumani, L Miller, CW Tan… - ACM Computing …, 2024 - dl.acm.org
Time Series Classification and Extrinsic Regression are important and challenging machine
learning tasks. Deep learning has revolutionized natural language processing and computer …

[HTML][HTML] Cognitive neuroscience and robotics: Advancements and future research directions

S Liu, L Wang, RX Gao - Robotics and Computer-Integrated Manufacturing, 2024 - Elsevier
In recent years, brain-based technologies that capitalise on human abilities to facilitate
human–system/robot interactions have been actively explored, especially in brain robotics …

DICE-net: a novel convolution-transformer architecture for Alzheimer detection in EEG signals

A Miltiadous, E Gionanidis, KD Tzimourta… - IEEE …, 2023 - ieeexplore.ieee.org
Objective: Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects
a significant percentage of the elderly. EEG has emerged as a promising tool for the timely …

[HTML][HTML] Bringing nature into hospital architecture: Machine learning-based EEG analysis of the biophilia effect in virtual reality

D Jung, DI Kim, N Kim - Journal of Environmental Psychology, 2023 - Elsevier
In recent years, there has been a growing interest in investigating the influence of biophilic
design on occupants' psychological comfort and well-being in the built environment …

Diagnosis and prognosis of mental disorders by means of EEG and deep learning: a systematic mapping study

MJ Rivera, MA Teruel, A Mate, J Trujillo - Artificial Intelligence Review, 2022 - Springer
Electroencephalography (EEG) is used in the diagnosis and prognosis of mental disorders
because it provides brain biomarkers. However, only highly trained doctors can interpret …

Prediction of drug response in major depressive disorder using ensemble of transfer learning with convolutional neural network based on EEG

MS Shahabi, A Shalbaf, A Maghsoudi - Biocybernetics and Biomedical …, 2021 - Elsevier
Abstract Major Depressive Disorder (MDD) is one of the leading causes of disability
worldwide. Prediction of response to Selective Serotonin Reuptake Inhibitors (SSRIs) …

A review of methods of diagnosis and complexity analysis of Alzheimer's disease using EEG signals

M Ouchani, S Gharibzadeh… - BioMed Research …, 2021 - Wiley Online Library
This study will concentrate on recent research on EEG signals for Alzheimer's diagnosis,
identifying and comparing key steps of EEG‐based Alzheimer's disease (AD) detection …

Advanced bioelectrical signal processing methods: Past, present and future approach—Part II: Brain signals

R Martinek, M Ladrova, M Sidikova, R Jaros… - Sensors, 2021 - mdpi.com
As it was mentioned in the previous part of this work (Part I)—the advanced signal
processing methods are one of the quickest and the most dynamically developing scientific …

Empowering precision medicine: AI-driven schizophrenia diagnosis via EEG signals: A comprehensive review from 2002–2023

M Jafari, D Sadeghi, A Shoeibi, H Alinejad-Rokny… - Applied …, 2024 - Springer
Schizophrenia (SZ) is a prevalent mental disorder characterized by cognitive, emotional,
and behavioral changes. Symptoms of SZ include hallucinations, illusions, delusions, lack of …

Machine learning algorithms for epilepsy detection based on published EEG databases: A systematic review

A Miltiadous, KD Tzimourta, N Giannakeas… - IEEE …, 2022 - ieeexplore.ieee.org
Epilepsy is the only neurological condition for which electroencephalography (EEG) is the
primary diagnostic and important prognostic clinical tool. However, the manual inspection of …