Nilpotent centers of cubic systems
AF Andreev, IA Andreeva, LV Detchenya… - Differential …, 2017 - Springer
We present an explicit form of cubic systems with a nilpotent singular point of the focus or
center type at the origin. A method for finding the focus quantities of such systems is …
center type at the origin. A method for finding the focus quantities of such systems is …
A Complete Classification on the Center-Focus Problem of a Generalized Cubic Kukles System with a Nilpotent Singular Point
F Li, T Chen, Y Liu, P Yu - Qualitative Theory of Dynamical Systems, 2024 - Springer
In this paper, we study the center-focus problem for a generalized cubic Kukles system with
a nilpotent singular point, which consists of a cubic system with an extra 4th-order term. A …
a nilpotent singular point, which consists of a cubic system with an extra 4th-order term. A …
Generalized symmetry of the Liénard system
AE Rudenok - Differential Equations, 2019 - Springer
We refine the notion of generalized symmetry of a plane autonomous system of differential
equations used by IS Kukles in the generalized symmetry method. A formula relating the …
equations used by IS Kukles in the generalized symmetry method. A formula relating the …
Solution of the center-focus problem for a cubic system reducible to a lienard system.
Y Bondar, A Sadovskii - Differential Equations, 2006 - search.ebscohost.com
The article discusses the solution of the center-focus problem for a cubic system reducible to
a Lienard system. The authors present the system of differential equations where A, B, C, D …
a Lienard system. The authors present the system of differential equations where A, B, C, D …
Обобщённая симметрия системы Льенара
АЕ Руденок - Дифференциальные уравнения, 2019 - elibrary.ru
Уточняется понятие обобщённой симметрии плоской автономной системы
дифференциальных уравнений, использовавшееся ИС Куклесом в методе …
дифференциальных уравнений, использовавшееся ИС Куклесом в методе …
[PDF][PDF] Система Льенара с комплексными коэффициентами и метод Черкаса/АП Садовский, ТВ Щеглова//Веснiк ГрДУ. Сер. 2. Матэматыка. Фiзiка …
АП Садовский, ТВ Щеглова - 2014 - elib.bsu.by
Для системы Льенара и ее обобщений с вещественными коэффициентами ЛА
Черкасом был разработан ряд критериев (теорем, определяющих необходимые и …
Черкасом был разработан ряд критериев (теорем, определяющих необходимые и …
Решение проблемы центра и фокуса для одной кубической системы, приводящейся к системе Льенара
ЮЛ Бондарь, АП Садовский - Дифференциальные уравнения, 2006 - mathnet.ru
1. Будем рассматривать систему дифференциальных уравнений х= у (1+ Dx)+ Rx2+
Qxs, у=-х+ Ах2+ ЗВху+ Су2+ Кх3+ 3Lx2y,(1) где А, В, С, D, К, L, Q, R-вещественные …
Qxs, у=-х+ Ах2+ ЗВху+ Су2+ Кх3+ 3Lx2y,(1) где А, В, С, D, К, L, Q, R-вещественные …
Rational Liénard systems with a center and an isochronous center
AE Rudenok - Differential Equations, 2020 - Springer
We consider the Liénard system ̇ x=-y, ̇ y= f (x)+ yg (x) with rational functions f and g such
that f (0)= g (0)= 0 and f^ ′ (0)= 1. We answer a question about the form of the system in the …
that f (0)= g (0)= 0 and f^ ′ (0)= 1. We answer a question about the form of the system in the …
[HTML][HTML] Versal unfolding of a nilpotent Liénard equilibrium within the odd Liénard family
Y Tang, W Zhang - Journal of Differential Equations, 2019 - Elsevier
Recently attentions were paid to versal unfolding of degenerate equilibria within a restricted
family of vector fields for a practical sense. The family of Liénard systems is such a family of …
family of vector fields for a practical sense. The family of Liénard systems is such a family of …
Nilpotent Centers of a Cubic System Reducible to a Nonlinear Vibration System.
LV Detchenya, AP Sadovskii - Differential Equations, 2019 - search.ebscohost.com
Nilpotent Centers of a Cubic System Reducible to a Nonlinear Vibration System Page 1 ISSN
0012-2661, Differential Equations, 2019, Vol. 55, No. 12, pp. 1665–1670. c Pleiades Publishing …
0012-2661, Differential Equations, 2019, Vol. 55, No. 12, pp. 1665–1670. c Pleiades Publishing …