Federated learning in smart city sensing: Challenges and opportunities

JC Jiang, B Kantarci, S Oktug, T Soyata - Sensors, 2020 - mdpi.com
Smart Cities sensing is an emerging paradigm to facilitate the transition into smart city
services. The advent of the Internet of Things (IoT) and the widespread use of mobile …

A systematic literature review on federated machine learning: From a software engineering perspective

SK Lo, Q Lu, C Wang, HY Paik, L Zhu - ACM Computing Surveys (CSUR …, 2021 - dl.acm.org
Federated learning is an emerging machine learning paradigm where clients train models
locally and formulate a global model based on the local model updates. To identify the state …

Edge learning for B5G networks with distributed signal processing: Semantic communication, edge computing, and wireless sensing

W Xu, Z Yang, DWK Ng, M Levorato… - IEEE journal of …, 2023 - ieeexplore.ieee.org
To process and transfer large amounts of data in emerging wireless services, it has become
increasingly appealing to exploit distributed data communication and learning. Specifically …

Federated learning-based AI approaches in smart healthcare: concepts, taxonomies, challenges and open issues

A Rahman, MS Hossain, G Muhammad, D Kundu… - Cluster computing, 2023 - Springer
Abstract Federated Learning (FL), Artificial Intelligence (AI), and Explainable Artificial
Intelligence (XAI) are the most trending and exciting technology in the intelligent healthcare …

Optimizing federated learning in distributed industrial IoT: A multi-agent approach

W Zhang, D Yang, W Wu, H Peng… - IEEE Journal on …, 2021 - ieeexplore.ieee.org
In this paper, we aim to make the best joint decision of device selection and computing and
spectrum resource allocation for optimizing federated learning (FL) performance in …

A joint learning and communications framework for federated learning over wireless networks

M Chen, Z Yang, W Saad, C Yin… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
In this article, the problem of training federated learning (FL) algorithms over a realistic
wireless network is studied. In the considered model, wireless users execute an FL …

Energy efficient federated learning over wireless communication networks

Z Yang, M Chen, W Saad, CS Hong… - IEEE Transactions …, 2020 - ieeexplore.ieee.org
In this paper, the problem of energy efficient transmission and computation resource
allocation for federated learning (FL) over wireless communication networks is investigated …

Joint device scheduling and resource allocation for latency constrained wireless federated learning

W Shi, S Zhou, Z Niu, M Jiang… - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
In federated learning (FL), devices contribute to the global training by uploading their local
model updates via wireless channels. Due to limited computation and communication …

Client selection and bandwidth allocation in wireless federated learning networks: A long-term perspective

J Xu, H Wang - IEEE Transactions on Wireless …, 2020 - ieeexplore.ieee.org
This paper studies federated learning (FL) in a classic wireless network, where learning
clients share a common wireless link to a coordinating server to perform federated model …

A survey of federated learning for edge computing: Research problems and solutions

Q Xia, W Ye, Z Tao, J Wu, Q Li - High-Confidence Computing, 2021 - Elsevier
Federated Learning is a machine learning scheme in which a shared prediction model can
be collaboratively learned by a number of distributed nodes using their locally stored data. It …