Image segmentation using deep learning: A survey

S Minaee, Y Boykov, F Porikli, A Plaza… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Image segmentation is a key task in computer vision and image processing with important
applications such as scene understanding, medical image analysis, robotic perception …

BIM, machine learning and computer vision techniques in underground construction: Current status and future perspectives

MQ Huang, J Ninić, QB Zhang - Tunnelling and Underground Space …, 2021 - Elsevier
The architecture, engineering and construction (AEC) industry is experiencing a
technological revolution driven by booming digitisation and automation. Advances in …

Openoccupancy: A large scale benchmark for surrounding semantic occupancy perception

X Wang, Z Zhu, W Xu, Y Zhang, Y Wei… - Proceedings of the …, 2023 - openaccess.thecvf.com
Semantic occupancy perception is essential for autonomous driving, as automated vehicles
require a fine-grained perception of the 3D urban structures. However, existing relevant …

Kitti-360: A novel dataset and benchmarks for urban scene understanding in 2d and 3d

Y Liao, J Xie, A Geiger - IEEE Transactions on Pattern Analysis …, 2022 - ieeexplore.ieee.org
For the last few decades, several major subfields of artificial intelligence including computer
vision, graphics, and robotics have progressed largely independently from each other …

Mvimgnet: A large-scale dataset of multi-view images

X Yu, M Xu, Y Zhang, H Liu, C Ye… - Proceedings of the …, 2023 - openaccess.thecvf.com
Being data-driven is one of the most iconic properties of deep learning algorithms. The birth
of ImageNet drives a remarkable trend of" learning from large-scale data" in computer vision …

Regtr: End-to-end point cloud correspondences with transformers

ZJ Yew, GH Lee - Proceedings of the IEEE/CVF conference …, 2022 - openaccess.thecvf.com
Despite recent success in incorporating learning into point cloud registration, many works
focus on learning feature descriptors and continue to rely on nearest-neighbor feature …

Unifying flow, stereo and depth estimation

H Xu, J Zhang, J Cai, H Rezatofighi… - … on Pattern Analysis …, 2023 - ieeexplore.ieee.org
We present a unified formulation and model for three motion and 3D perception tasks:
optical flow, rectified stereo matching and unrectified stereo depth estimation from posed …

Ego-exo4d: Understanding skilled human activity from first-and third-person perspectives

K Grauman, A Westbury, L Torresani… - Proceedings of the …, 2024 - openaccess.thecvf.com
Abstract We present Ego-Exo4D a diverse large-scale multimodal multiview video dataset
and benchmark challenge. Ego-Exo4D centers around simultaneously-captured egocentric …

Adabins: Depth estimation using adaptive bins

SF Bhat, I Alhashim, P Wonka - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
We address the problem of estimating a high quality dense depth map from a single RGB
input image. We start out with a baseline encoder-decoder convolutional neural network …

Predator: Registration of 3d point clouds with low overlap

S Huang, Z Gojcic, M Usvyatsov… - Proceedings of the …, 2021 - openaccess.thecvf.com
We introduce PREDATOR, a model for pairwise pointcloud registration with deep attention
to the overlap region. Different from previous work, our model is specifically designed to …