Trustworthy AI: From principles to practices

B Li, P Qi, B Liu, S Di, J Liu, J Pei, J Yi… - ACM Computing Surveys, 2023 - dl.acm.org
The rapid development of Artificial Intelligence (AI) technology has enabled the deployment
of various systems based on it. However, many current AI systems are found vulnerable to …

Perceived diversity in software engineering: a systematic literature review

G Rodríguez-Pérez, R Nadri, M Nagappan - Empirical Software …, 2021 - Springer
We define perceived diversity as the diversity factors that individuals are born with.
Perceived diversity in Software Engineering has been recognized as a high-value team …

A survey on machine learning techniques for source code analysis

T Sharma, M Kechagia, S Georgiou, R Tiwari… - arXiv preprint arXiv …, 2021 - arxiv.org
The advancements in machine learning techniques have encouraged researchers to apply
these techniques to a myriad of software engineering tasks that use source code analysis …

Fair preprocessing: towards understanding compositional fairness of data transformers in machine learning pipeline

S Biswas, H Rajan - Proceedings of the 29th ACM Joint Meeting on …, 2021 - dl.acm.org
In recent years, many incidents have been reported where machine learning models
exhibited discrimination among people based on race, sex, age, etc. Research has been …

Fairness testing: A comprehensive survey and analysis of trends

Z Chen, JM Zhang, M Hort, M Harman… - ACM Transactions on …, 2024 - dl.acm.org
Unfair behaviors of Machine Learning (ML) software have garnered increasing attention and
concern among software engineers. To tackle this issue, extensive research has been …

MAAT: a novel ensemble approach to addressing fairness and performance bugs for machine learning software

Z Chen, JM Zhang, F Sarro, M Harman - … of the 30th ACM joint european …, 2022 - dl.acm.org
Machine Learning (ML) software can lead to unfair and unethical decisions, making software
fairness bugs an increasingly significant concern for software engineers. However …

A comprehensive empirical study of bias mitigation methods for machine learning classifiers

Z Chen, JM Zhang, F Sarro, M Harman - ACM Transactions on Software …, 2023 - dl.acm.org
Software bias is an increasingly important operational concern for software engineers. We
present a large-scale, comprehensive empirical study of 17 representative bias mitigation …

Managing bias and unfairness in data for decision support: a survey of machine learning and data engineering approaches to identify and mitigate bias and …

A Balayn, C Lofi, GJ Houben - The VLDB Journal, 2021 - Springer
The increasing use of data-driven decision support systems in industry and governments is
accompanied by the discovery of a plethora of bias and unfairness issues in the outputs of …

Fairway: a way to build fair ML software

J Chakraborty, S Majumder, Z Yu… - Proceedings of the 28th …, 2020 - dl.acm.org
Machine learning software is increasingly being used to make decisions that affect people's
lives. But sometimes, the core part of this software (the learned model), behaves in a biased …

Are my deep learning systems fair? An empirical study of fixed-seed training

S Qian, VH Pham, T Lutellier, Z Hu… - Advances in …, 2021 - proceedings.neurips.cc
Deep learning (DL) systems have been gaining popularity in critical tasks such as credit
evaluation and crime prediction. Such systems demand fairness. Recent work shows that DL …