Geometric deep learning for protein–protein interaction predictions

GSP Lemieux, E Paquet, HL Viktor… - IEEE Access, 2022 - ieeexplore.ieee.org
This work introduces novel approaches, based on geometrical deep learning, for predicting
protein–protein interactions. A dataset containing both interacting and non-interacting …

A survey of algorithms for transforming molecular dynamics data into metadata for in situ analytics based on machine learning methods

M Taufer, T Estrada, T Johnston - … Transactions of the …, 2020 - royalsocietypublishing.org
This paper presents the survey of three algorithms to transform atomic-level molecular
snapshots from molecular dynamics (MD) simulations into metadata representations that are …

Cronus: Computer Vision-based Machine Intelligent Hybrid Memory Management

TD Doudali, A Gavrilovska - … of the 2022 International Symposium on …, 2022 - dl.acm.org
Current state-of-the-art resource management systems leverage Machine Learning (ML)
methods to enable the efficient use of heterogeneous memory hardware, deployed across …

A graphic encoding method for quantitative classification of protein structure and representation of conformational changes

H Carrillo-Cabada, J Benson… - … ACM transactions on …, 2019 - ieeexplore.ieee.org
In order to successfully predict a proteins function throughout its trajectory, in addition to
uncovering changes in its conformational state, it is necessary to employ techniques that …

АНАЛИЗ И ПОДБОР ЛИГАНДОВ ДЛЯ TRPM8 ПРИ ПОМОЩИ ЖЕСТКОГО ДОКИНГА И МАШИННОГО ОБУЧЕНИЯ

ПД Тимкин, ЭА Тимофеев, АП Чупалов… - Системный анализ в …, 2020 - elibrary.ru
В работе, используя метод моделирования эксперимента in silico, производили докинг
рецептора и его лигандов с целью получения данных необходимых для исследования …