Advances, challenges and opportunities in creating data for trustworthy AI

W Liang, GA Tadesse, D Ho, L Fei-Fei… - Nature Machine …, 2022 - nature.com
As artificial intelligence (AI) transitions from research to deployment, creating the appropriate
datasets and data pipelines to develop and evaluate AI models is increasingly the biggest …

A survey of large language models

WX Zhao, K Zhou, J Li, T Tang, X Wang, Y Hou… - arXiv preprint arXiv …, 2023 - arxiv.org
Language is essentially a complex, intricate system of human expressions governed by
grammatical rules. It poses a significant challenge to develop capable AI algorithms for …

Holistic evaluation of language models

P Liang, R Bommasani, T Lee, D Tsipras… - arXiv preprint arXiv …, 2022 - arxiv.org
Language models (LMs) are becoming the foundation for almost all major language
technologies, but their capabilities, limitations, and risks are not well understood. We present …

Tidybot: Personalized robot assistance with large language models

J Wu, R Antonova, A Kan, M Lepert, A Zeng, S Song… - Autonomous …, 2023 - Springer
For a robot to personalize physical assistance effectively, it must learn user preferences that
can be generally reapplied to future scenarios. In this work, we investigate personalization of …

Beyond supervised learning for pervasive healthcare

X Gu, F Deligianni, J Han, X Liu, W Chen… - IEEE Reviews in …, 2023 - ieeexplore.ieee.org
The integration of machine/deep learning and sensing technologies is transforming
healthcare and medical practice. However, inherent limitations in healthcare data, namely …

Do as i can, not as i say: Grounding language in robotic affordances

M Ahn, A Brohan, N Brown, Y Chebotar… - arXiv preprint arXiv …, 2022 - arxiv.org
Large language models can encode a wealth of semantic knowledge about the world. Such
knowledge could be extremely useful to robots aiming to act upon high-level, temporally …

Minedojo: Building open-ended embodied agents with internet-scale knowledge

L Fan, G Wang, Y Jiang, A Mandlekar… - Advances in …, 2022 - proceedings.neurips.cc
Autonomous agents have made great strides in specialist domains like Atari games and Go.
However, they typically learn tabula rasa in isolated environments with limited and manually …

Agentbench: Evaluating llms as agents

X Liu, H Yu, H Zhang, Y Xu, X Lei, H Lai, Y Gu… - arXiv preprint arXiv …, 2023 - arxiv.org
Large Language Models (LLMs) are becoming increasingly smart and autonomous,
targeting real-world pragmatic missions beyond traditional NLP tasks. As a result, there has …

On the opportunities and risks of foundation models

R Bommasani, DA Hudson, E Adeli, R Altman… - arXiv preprint arXiv …, 2021 - arxiv.org
AI is undergoing a paradigm shift with the rise of models (eg, BERT, DALL-E, GPT-3) that are
trained on broad data at scale and are adaptable to a wide range of downstream tasks. We …

[PDF][PDF] Vima: General robot manipulation with multimodal prompts

Y Jiang, A Gupta, Z Zhang, G Wang… - arXiv preprint …, 2022 - authors.library.caltech.edu
Prompt-based learning has emerged as a successful paradigm in natural language
processing, where a single general-purpose language model can be instructed to perform …