Activation functions in deep learning: A comprehensive survey and benchmark

SR Dubey, SK Singh, BB Chaudhuri - Neurocomputing, 2022 - Elsevier
Neural networks have shown tremendous growth in recent years to solve numerous
problems. Various types of neural networks have been introduced to deal with different types …

Shortcut learning in deep neural networks

R Geirhos, JH Jacobsen, C Michaelis… - Nature Machine …, 2020 - nature.com
Deep learning has triggered the current rise of artificial intelligence and is the workhorse of
today's machine intelligence. Numerous success stories have rapidly spread all over …

Out-of-distribution detection with deep nearest neighbors

Y Sun, Y Ming, X Zhu, Y Li - International Conference on …, 2022 - proceedings.mlr.press
Abstract Out-of-distribution (OOD) detection is a critical task for deploying machine learning
models in the open world. Distance-based methods have demonstrated promise, where …

Better diffusion models further improve adversarial training

Z Wang, T Pang, C Du, M Lin… - … on Machine Learning, 2023 - proceedings.mlr.press
It has been recognized that the data generated by the denoising diffusion probabilistic
model (DDPM) improves adversarial training. After two years of rapid development in …

Openood: Benchmarking generalized out-of-distribution detection

J Yang, P Wang, D Zou, Z Zhou… - Advances in …, 2022 - proceedings.neurips.cc
Abstract Out-of-distribution (OOD) detection is vital to safety-critical machine learning
applications and has thus been extensively studied, with a plethora of methods developed in …

Generalized out-of-distribution detection: A survey

J Yang, K Zhou, Y Li, Z Liu - International Journal of Computer Vision, 2024 - Springer
Abstract Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of
machine learning systems. For instance, in autonomous driving, we would like the driving …

React: Out-of-distribution detection with rectified activations

Y Sun, C Guo, Y Li - Advances in Neural Information …, 2021 - proceedings.neurips.cc
Abstract Out-of-distribution (OOD) detection has received much attention lately due to its
practical importance in enhancing the safe deployment of neural networks. One of the …

A survey of uncertainty in deep neural networks

J Gawlikowski, CRN Tassi, M Ali, J Lee, M Humt… - Artificial Intelligence …, 2023 - Springer
Over the last decade, neural networks have reached almost every field of science and
become a crucial part of various real world applications. Due to the increasing spread …

Delving into out-of-distribution detection with vision-language representations

Y Ming, Z Cai, J Gu, Y Sun, W Li… - Advances in neural …, 2022 - proceedings.neurips.cc
Recognizing out-of-distribution (OOD) samples is critical for machine learning systems
deployed in the open world. The vast majority of OOD detection methods are driven by a …

Dynamic neural networks: A survey

Y Han, G Huang, S Song, L Yang… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Dynamic neural network is an emerging research topic in deep learning. Compared to static
models which have fixed computational graphs and parameters at the inference stage …