Optical soliton solutions to the Fokas–Lenells model applying the φ 6-model expansion approach

MS Ullah, AR Seadawy, MZ Ali - Optical and Quantum Electronics, 2023 - Springer
The φ 6-model expansion approach is presented to achieve optical soliton solutions for the
Fokas-Lenells model. We apply a variable relation to translate the model's partial differential …

Construction of degenerate lump solutions for (2+ 1)-dimensional Yu-Toda-Sasa-Fukuyama equation

W Li, B Li - Chaos, Solitons & Fractals, 2024 - Elsevier
By utilizing Hirota's bilinear and a novel limit method, the degenerate lump solutions
including anomalous scattering of lumps and weak interaction of multiple lumps can be …

[HTML][HTML] Application of multivariate bilinear neural network method to fractional partial differential equations

JG Liu, WH Zhu, YK Wu, GH Jin - Results in Physics, 2023 - Elsevier
In this work, a multivariate bilinear neural network method is proposed to seek more exact
analytical solutions of nonlinear partial differential equations. As an example, the (2+ 1) …

Study of stochastic–fractional Drinfel'd–Sokolov–Wilson equation for M-shaped rational, homoclinic breather, periodic and Kink-Cross rational solutions

SAM Alsallami, STR Rizvi, AR Seadawy - Mathematics, 2023 - mdpi.com
We explore stochastic–fractional Drinfel'd–Sokolov–Wilson (SFDSW) equations for some
wave solutions such as the cross-kink rational wave solution, periodic cross-rational wave …

[HTML][HTML] Variety interaction between k-lump and k-kink solutions for the (3+ 1)-D Burger system by bilinear analysis

Y Gu, S Malmir, J Manafian, OA Ilhan, A Alizadeh… - Results in Physics, 2022 - Elsevier
In this paper, we investigate the (3+ 1)-dimensional Burger system which is employed in
soliton theory and generated by considering the Hirota bilinear equation. We conclude some …

[HTML][HTML] High performance computational method for fractional model of solid tumour invasion

KS Nisar, R Jagatheeshwari, C Ravichandran… - Ain Shams Engineering …, 2023 - Elsevier
The behaviour of the solid tumour invasion system in the sense of Caputo fractional with
time ζ and space x is analyzed by the high performance computational method: q-Homotopy …

Multiple rogue wave, double-periodic soliton and breather wave solutions for a generalized breaking soliton system in (3+ 1)-dimensions

W Li, Y Kuang, J Manafian, S Malmir, B Eslami… - Scientific Reports, 2024 - nature.com
We focused on solitonic phenomena in wave propagation which was extracted from a
generalized breaking soliton system in (3+ 1)-dimensions. The model describes the …

Exploration of soliton structures in the Hirota–Maccari system with stability analysis

N Alam, WX Ma, MS Ullah, AR Seadawy… - … Physics Letters B, 2024 - World Scientific
In this research, the modified extended tanh-function (METF) and the extended Jacobi
elliptic function expansion (EJEFE) techniques are used to investigate the generation and …

A mathematical study of the (3+ 1)-D variable coefficients generalized shallow water wave equation with its application in the interaction between the lump and soliton …

R Li, OA İlhan, J Manafian, KH Mahmoud, M Abotaleb… - Mathematics, 2022 - mdpi.com
In this paper, the Hirota bilinear method, which is an important scheme, is used. The
equation of the shallow water wave in oceanography and atmospheric science is extended …

On simulations of 3D fractional WBBM model through mathematical and graphical analysis with the assists of fractionality and unrestricted parameters

NHM Shahen, Foyjonnesa, M Al Amin, MM Rahman - Scientific Reports, 2024 - nature.com
This study retrieves some novel exact solutions to the family of 3D space–time fractional
Wazwaz–Benjamin–Bona–Mahony (WBBM) equations in the context of diverse nonlinear …