[HTML][HTML] Spatio-temporal stability of housing submarkets. Tracking spatial location of clusters of geographically weighted regression estimates of price determinants

K Kopczewska, P Ćwiakowski - Land Use Policy, 2021 - Elsevier
This paper fills the gap in rich housing literature by testing the spatio-temporal stability of
real estate submarkets. We start with standard Geographically Weighted Regression (GWR) …

[HTML][HTML] 疾病时空聚集分析的研究与进展

林静静, 张铁威, 李秀央 - 中华流行病学杂志, 2020 - html.rhhz.net
近年来, 疾病的时空聚集分析受到越来越多的关注, 其在了解疾病在时间和空间上的分布特征
方面发挥着重要的作用, 可为探索病因和疾病防控提供参考依据. 为了更好地理解疾病时空聚集 …

SNN_flow: a shared nearest-neighbor-based clustering method for inhomogeneous origin-destination flows

Q Liu, J Yang, M Deng, C Song… - International Journal of …, 2022 - Taylor & Francis
Identifying clusters from individual origin–destination (OD) flows is vital for investigating
spatial interactions and flow mapping. However, detecting arbitrarily-shaped and non …

A two-phase clustering approach for urban hotspot detection with spatiotemporal and network constraints

F Li, W Shi, H Zhang - IEEE Journal of Selected Topics in …, 2021 - ieeexplore.ieee.org
Urban hotspots are regions with intensive passenger flow, sound infrastructure, and thriving
business during a certain period of time, which mirror the travel behavior of residents. Taxi …

[HTML][HTML] 尺度驱动的空间聚类理论

李志林, 刘启亮, 唐建波 - 2017 - html.rhhz.net
空间聚类是探索性空间数据分析的有力手段, 不仅可以直接用于发现地理现象的分布格局与分布
特征, 亦可以为其他空间数据分析任务提供重要的预处理步骤. 空间聚类有望成为大数据认知的 …

Using multiple time series analysis for geosensor data forecasting

S Pravilovic, M Bilancia, A Appice, D Malerba - Information Sciences, 2017 - Elsevier
Forecasting in geophysical time series is a challenging problem with numerous applications.
The presence of correlation (ie spatial correlation across several sites and time correlation …

A method with adaptive graphs to constrain multi-view subspace clustering of geospatial big data from multiple sources

Q Liu, W Huan, M Deng - Remote Sensing, 2022 - mdpi.com
Clustering of multi-source geospatial big data provides opportunities to comprehensively
describe urban structures. Most existing studies focus only on the clustering of a single type …

ST-ADPTC: a method for clustering spatiotemporal raster data based on improved density peak detection

J Song, S Yue, M Chen, Z Sun, Y Wen… - International Journal of …, 2024 - Taylor & Francis
Spatiotemporal raster (STR) data employ an array of grids to represent temporally varying
and spatially distributed information, commonly utilized for recording environmental …

A parallel varied density-based clustering algorithm with optimized data partition

Y Gu, X Ye, F Zhang, Z Du, R Liu, L Yu - Journal of Spatial Science, 2018 - Taylor & Francis
This paper presents a parallel varied density-based clustering algorithm with optimized data
partition (PVDB). First, we improve the partition with reduced boundary points algorithm …

Dual-constraint spatiotemporal clustering approach for exploring marine anomaly patterns using remote sensing products

J Liu, C Xue, Y He, Q Dong, F Kong… - IEEE Journal of …, 2018 - ieeexplore.ieee.org
Spatiotemporal clustering patterns of marine anomaly variations are the focus of much
current global climate change research. Marine anomaly variations have multidimensional …