Towards adaptive learning and inference-Applications to hyperparameter tuning and astroparticle physics

R Bardenet - 2012 - theses.hal.science
Inference and optimization algorithms usually have hyperparameters that require to be
tuned in order to achieve efficiency. We consider here different approaches to efficiently …

Adaptive MCMC with online relabeling

R Bardenet, O Cappé, G Fort, B Kégl - 2015 - projecteuclid.org
Long version of the paper. This long version of the paper features an additional evaluated
method for Section 2.2 (AM with posterior reordering), examples of the behavior of AMOR on …

Supplemental article to Adaptive MCMC with online relabeling–Long version

R BARDENET, O CAPPÉ, G FORT, B KÉGL - projecteuclid.org
When targeting a distribution that is artificially invariant under some permutations, Markov
chain Monte Carlo (MCMC) algorithms face the label-switching problem, rendering marginal …

[PDF][PDF] Rémi Bardenet

PA Doucet, RÉ Moulines, C Robert, DB Kégl, EF Bach… - Citeseer
In machine learning (ML), the training process of an algorithm generally consists of two
nested loops: the outer loop iterates over hyperparameter values, while the inner loop …

[PDF][PDF] Détection et caractérisation de si-gnaux transitoires

MO Gaudoin - 2013 - santepublique-editions.fr
Peut-on identifier un appareil électrique à partir de l'énergie électrique qu'il consomme?
C'est essentiellement cette question qui guide les travaux de recherche présentés dans …

[PDF][PDF] Adaptive MCMC with online relabeling Long version

R Bardenet, O Cappé, G Fort… - arXiv preprint arXiv …, 2012 - researchgate.net
When targeting a distribution that is artificially invariant under some permutations, Markov
chain Monte Carlo (MCMC) algorithms face the label-switching problem, rendering marginal …

[引用][C] Rémi Bardenet

RÉ Moulines, C Robert, DB Kégl, PM Sebag, EF Bach…