A comprehensive survey on poisoning attacks and countermeasures in machine learning

Z Tian, L Cui, J Liang, S Yu - ACM Computing Surveys, 2022 - dl.acm.org
The prosperity of machine learning has been accompanied by increasing attacks on the
training process. Among them, poisoning attacks have become an emerging threat during …

Learning from noisy labels with deep neural networks: A survey

H Song, M Kim, D Park, Y Shin… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Deep learning has achieved remarkable success in numerous domains with help from large
amounts of big data. However, the quality of data labels is a concern because of the lack of …

Part-based pseudo label refinement for unsupervised person re-identification

Y Cho, WJ Kim, S Hong… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Unsupervised person re-identification (re-ID) aims at learning discriminative representations
for person retrieval from unlabeled data. Recent techniques accomplish this task by using …

Selective-supervised contrastive learning with noisy labels

S Li, X Xia, S Ge, T Liu - … of the IEEE/CVF conference on …, 2022 - openaccess.thecvf.com
Deep networks have strong capacities of embedding data into latent representations and
finishing following tasks. However, the capacities largely come from high-quality annotated …

Pervasive label errors in test sets destabilize machine learning benchmarks

CG Northcutt, A Athalye, J Mueller - arXiv preprint arXiv:2103.14749, 2021 - arxiv.org
We identify label errors in the test sets of 10 of the most commonly-used computer vision,
natural language, and audio datasets, and subsequently study the potential for these label …

Data collection and quality challenges in deep learning: A data-centric ai perspective

SE Whang, Y Roh, H Song, JG Lee - The VLDB Journal, 2023 - Springer
Data-centric AI is at the center of a fundamental shift in software engineering where machine
learning becomes the new software, powered by big data and computing infrastructure …

Learn from all: Erasing attention consistency for noisy label facial expression recognition

Y Zhang, C Wang, X Ling, W Deng - European Conference on Computer …, 2022 - Springer
Abstract Noisy label Facial Expression Recognition (FER) is more challenging than
traditional noisy label classification tasks due to the inter-class similarity and the annotation …

Unicon: Combating label noise through uniform selection and contrastive learning

N Karim, MN Rizve, N Rahnavard… - Proceedings of the …, 2022 - openaccess.thecvf.com
Supervised deep learning methods require a large repository of annotated data; hence,
label noise is inevitable. Training with such noisy data negatively impacts the generalization …

Robust federated learning with noisy and heterogeneous clients

X Fang, M Ye - Proceedings of the IEEE/CVF Conference …, 2022 - openaccess.thecvf.com
Abstract Model heterogeneous federated learning is a challenging task since each client
independently designs its own model. Due to the annotation difficulty and free-riding …

Early-learning regularization prevents memorization of noisy labels

S Liu, J Niles-Weed, N Razavian… - Advances in neural …, 2020 - proceedings.neurips.cc
We propose a novel framework to perform classification via deep learning in the presence of
noisy annotations. When trained on noisy labels, deep neural networks have been observed …