Machine learning techniques in landslide susceptibility mapping: a survey and a case study

T Kavzoglu, I Colkesen, EK Sahin - Landslides: Theory, practice and …, 2019 - Springer
Abstract Machine learning techniques have been increasingly employed for solving many
scientific and engineering problems. These data driven methods have been lately utilized …

A bibliometric and content analysis of research trends on GIS-based landslide susceptibility from 2001 to 2020

J Huang, X Wu, S Ling, X Li, Y Wu, L Peng… - … Science and Pollution …, 2022 - Springer
To assess the status of hotspots and research trends on geographic information system
(GIS)–based landslide susceptibility (LS), we analysed 1142 articles from the Thomas …

Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection

O Ghorbanzadeh, T Blaschke, K Gholamnia… - Remote Sensing, 2019 - mdpi.com
There is a growing demand for detailed and accurate landslide maps and inventories
around the globe, but particularly in hazard-prone regions such as the Himalayas. Most …

[HTML][HTML] Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia

AM Youssef, HR Pourghasemi - Geoscience Frontiers, 2021 - Elsevier
The current study aimed at evaluating the capabilities of seven advanced machine learning
techniques (MLTs), including, Support Vector Machine (SVM), Random Forest (RF) …

A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility

W Chen, X Xie, J Wang, B Pradhan, H Hong, DT Bui… - Catena, 2017 - Elsevier
The main purpose of the present study is to use three state-of-the-art data mining
techniques, namely, logistic model tree (LMT), random forest (RF), and classification and …

A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model

J Duan, PG Asteris, H Nguyen, XN Bui… - Engineering with …, 2021 - Springer
Recycled aggregate concrete is used as an alternative material in construction engineering,
aiming to environmental protection and sustainable development. However, the …

Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling

W Chen, S Zhang, R Li, H Shahabi - Science of the total environment, 2018 - Elsevier
The main aim of the present study is to explore and compare three state-of-the art data
mining techniques, best-first decision tree, random forest, and naïve Bayes tree, for landslide …

Prediction of the landslide susceptibility: Which algorithm, which precision?

HR Pourghasemi, O Rahmati - Catena, 2018 - Elsevier
Coupling machine learning algorithms with spatial analytical techniques for landslide
susceptibility modeling is a worth considering issue. So, the current research intend to …

GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models

W Chen, Y Li - Catena, 2020 - Elsevier
Landslides have caused huge economic and human losses in China. Mapping of landslide
susceptibility is an important tool to prevent and control landslide disasters. The purpose of …

Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China

W Chen, J Peng, H Hong, H Shahabi, B Pradhan… - Science of the total …, 2018 - Elsevier
The preparation of a landslide susceptibility map is considered to be the first step for
landslide hazard mitigation and risk assessment. However, these maps are accepted as end …