Vision-language pre-training: Basics, recent advances, and future trends

Z Gan, L Li, C Li, L Wang, Z Liu… - Foundations and Trends …, 2022 - nowpublishers.com
This monograph surveys vision-language pre-training (VLP) methods for multimodal
intelligence that have been developed in the last few years. We group these approaches …

Foundations & trends in multimodal machine learning: Principles, challenges, and open questions

PP Liang, A Zadeh, LP Morency - ACM Computing Surveys, 2024 - dl.acm.org
Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design
computer agents with intelligent capabilities such as understanding, reasoning, and learning …

The llama 3 herd of models

A Dubey, A Jauhri, A Pandey, A Kadian… - arXiv preprint arXiv …, 2024 - arxiv.org
Modern artificial intelligence (AI) systems are powered by foundation models. This paper
presents a new set of foundation models, called Llama 3. It is a herd of language models …

Llama-adapter: Efficient fine-tuning of language models with zero-init attention

R Zhang, J Han, C Liu, P Gao, A Zhou, X Hu… - arXiv preprint arXiv …, 2023 - arxiv.org
We present LLaMA-Adapter, a lightweight adaption method to efficiently fine-tune LLaMA
into an instruction-following model. Using 52K self-instruct demonstrations, LLaMA-Adapter …

Egoschema: A diagnostic benchmark for very long-form video language understanding

K Mangalam, R Akshulakov… - Advances in Neural …, 2023 - proceedings.neurips.cc
We introduce EgoSchema, a very long-form video question-answering dataset, and
benchmark to evaluate long video understanding capabilities of modern vision and …

Vid2seq: Large-scale pretraining of a visual language model for dense video captioning

A Yang, A Nagrani, PH Seo, A Miech… - Proceedings of the …, 2023 - openaccess.thecvf.com
In this work, we introduce Vid2Seq, a multi-modal single-stage dense event captioning
model pretrained on narrated videos which are readily-available at scale. The Vid2Seq …

Moviechat: From dense token to sparse memory for long video understanding

E Song, W Chai, G Wang, Y Zhang… - Proceedings of the …, 2024 - openaccess.thecvf.com
Recently integrating video foundation models and large language models to build a video
understanding system can overcome the limitations of specific pre-defined vision tasks. Yet …

Mvbench: A comprehensive multi-modal video understanding benchmark

K Li, Y Wang, Y He, Y Li, Y Wang… - Proceedings of the …, 2024 - openaccess.thecvf.com
With the rapid development of Multi-modal Large Language Models (MLLMs) a number of
diagnostic benchmarks have recently emerged to evaluate the comprehension capabilities …

Zero-shot video question answering via frozen bidirectional language models

A Yang, A Miech, J Sivic, I Laptev… - Advances in Neural …, 2022 - proceedings.neurips.cc
Video question answering (VideoQA) is a complex task that requires diverse multi-modal
data for training. Manual annotation of question and answers for videos, however, is tedious …

Self-chained image-language model for video localization and question answering

S Yu, J Cho, P Yadav, M Bansal - Advances in Neural …, 2024 - proceedings.neurips.cc
Recent studies have shown promising results on utilizing large pre-trained image-language
models for video question answering. While these image-language models can efficiently …