Analysis of tuberculosis severity levels from CT pulmonary images based on enhanced residual deep learning architecture

XW Gao, C James-Reynolds, E Currie - Neurocomputing, 2020 - Elsevier
This research investigates the application of CT pulmonary images to the detection and
characterisation of TB at five levels of severity, in order to monitor the efficacy of treatment …

Ensembled liver cancer detection and classification using CT images

A Krishan, D Mittal - … , Part H: Journal of Engineering in …, 2021 - journals.sagepub.com
Computed tomography (CT) images are commonly used to diagnose liver disease. It is
sometimes very difficult to comment on the type, category and level of the tumor, even for …

Overview of ImageCLEFtuberculosis 2018: detecting multi-drug resistance, classifying tuberculosis types and assessing severity scores

Y Dicente Cid, V Liauchuk, V Kovalev… - Proceedings of CLEF …, 2018 - arodes.hes-so.ch
ImageCLEF is the image retrieval task of the Conference and Labs of the Evaluation Forum
(CLEF). ImageCLEF has historically focused on the multimodal and language-independent …

DeepPulmoTB: A benchmark dataset for multi-task learning of tuberculosis lesions in lung computerized tomography (CT)

Z Tan, H Madzin, B Norafida, Y ChongShuang, W Sun… - Heliyon, 2024 - cell.com
Tuberculosis (TB) remains a significant global health challenge, characterized by high
incidence and mortality rates on a global scale. With the rapid advancement of computer …

[PDF][PDF] Feature and Deep Learning Based Approaches for Automatic Report Generation and Severity Scoring of Lung Tuberculosis from CT Images.

K Bogomasov, D Braun, A Burbach… - CLEF (Working …, 2019 - ceur-ws.org
The paper presents two approaches for automatic Computed Tomography (CT) report and
tuberculosis (TB) severity scoring which were two subtasks of ImageCLEFtuberculosis 2019 …

[PDF][PDF] Anwendungsgebiete für die automatisierte Informationsgewinnung aus Bildern

S Conrad, M Tatusch, K Bogomasov… - Episteme in …, 2020 - refubium.fu-berlin.de
Das Erkennen von Objekten in Bildern wird in vielen Anwendungsgebieten benötigt. Am
Beispiel der Erkennung von Bergen–anhand ihrer Silhouette–und von Sehenswürdigkeiten …