[HTML][HTML] Attention mechanisms in computer vision: A survey

MH Guo, TX Xu, JJ Liu, ZN Liu, PT Jiang, TJ Mu… - Computational visual …, 2022 - Springer
Humans can naturally and effectively find salient regions in complex scenes. Motivated by
this observation, attention mechanisms were introduced into computer vision with the aim of …

[HTML][HTML] Attention in psychology, neuroscience, and machine learning

GW Lindsay - Frontiers in computational neuroscience, 2020 - frontiersin.org
Attention is the important ability to flexibly control limited computational resources. It has
been studied in conjunction with many other topics in neuroscience and psychology …

Multi-attentional deepfake detection

H Zhao, W Zhou, D Chen, T Wei… - Proceedings of the …, 2021 - openaccess.thecvf.com
Face forgery by deepfake is widely spread over the internet and has raised severe societal
concerns. Recently, how to detect such forgery contents has become a hot research topic …

Dynamic neural networks: A survey

Y Han, G Huang, S Song, L Yang… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Dynamic neural network is an emerging research topic in deep learning. Compared to static
models which have fixed computational graphs and parameters at the inference stage …

Fine-grained image analysis with deep learning: A survey

XS Wei, YZ Song, O Mac Aodha, J Wu… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Fine-grained image analysis (FGIA) is a longstanding and fundamental problem in computer
vision and pattern recognition, and underpins a diverse set of real-world applications. The …

Dual cross-attention learning for fine-grained visual categorization and object re-identification

H Zhu, W Ke, D Li, J Liu, L Tian… - Proceedings of the …, 2022 - openaccess.thecvf.com
Recently, self-attention mechanisms have shown impressive performance in various NLP
and CV tasks, which can help capture sequential characteristics and derive global …

Counterfactual attention learning for fine-grained visual categorization and re-identification

Y Rao, G Chen, J Lu, J Zhou - Proceedings of the IEEE/CVF …, 2021 - openaccess.thecvf.com
Attention mechanism has demonstrated great potential in fine-grained visual recognition
tasks. In this paper, we present a counterfactual attention learning method to learn more …

Transfg: A transformer architecture for fine-grained recognition

J He, JN Chen, S Liu, A Kortylewski, C Yang… - Proceedings of the …, 2022 - ojs.aaai.org
Fine-grained visual classification (FGVC) which aims at recognizing objects from
subcategories is a very challenging task due to the inherently subtle inter-class differences …

Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images

Y Song, S Zheng, L Li, X Zhang… - … ACM transactions on …, 2021 - ieeexplore.ieee.org
A novel coronavirus (COVID-19) recently emerged as an acute respiratory syndrome, and
has caused a pneumonia outbreak world-widely. As the COVID-19 continues to spread …

Learning attention-guided pyramidal features for few-shot fine-grained recognition

H Tang, C Yuan, Z Li, J Tang - Pattern Recognition, 2022 - Elsevier
Few-shot fine-grained recognition (FS-FGR) aims to distinguish several highly similar
objects from different sub-categories with limited supervision. However, traditional few-shot …