A review on fairness in machine learning

D Pessach, E Shmueli - ACM Computing Surveys (CSUR), 2022 - dl.acm.org
An increasing number of decisions regarding the daily lives of human beings are being
controlled by artificial intelligence and machine learning (ML) algorithms in spheres ranging …

Evaluating recommender systems: survey and framework

E Zangerle, C Bauer - ACM Computing Surveys, 2022 - dl.acm.org
The comprehensive evaluation of the performance of a recommender system is a complex
endeavor: many facets need to be considered in configuring an adequate and effective …

A survey on the fairness of recommender systems

Y Wang, W Ma, M Zhang, Y Liu, S Ma - ACM Transactions on …, 2023 - dl.acm.org
Recommender systems are an essential tool to relieve the information overload challenge
and play an important role in people's daily lives. Since recommendations involve …

Bias and debias in recommender system: A survey and future directions

J Chen, H Dong, X Wang, F Feng, M Wang… - ACM Transactions on …, 2023 - dl.acm.org
While recent years have witnessed a rapid growth of research papers on recommender
system (RS), most of the papers focus on inventing machine learning models to better fit …

Fairness in machine learning: A survey

S Caton, C Haas - ACM Computing Surveys, 2024 - dl.acm.org
When Machine Learning technologies are used in contexts that affect citizens, companies as
well as researchers need to be confident that there will not be any unexpected social …

Algorithmic content moderation: Technical and political challenges in the automation of platform governance

R Gorwa, R Binns, C Katzenbach - Big Data & Society, 2020 - journals.sagepub.com
As government pressure on major technology companies builds, both firms and legislators
are searching for technical solutions to difficult platform governance puzzles such as hate …

Fairness in recommendation ranking through pairwise comparisons

A Beutel, J Chen, T Doshi, H Qian, L Wei… - Proceedings of the 25th …, 2019 - dl.acm.org
Recommender systems are one of the most pervasive applications of machine learning in
industry, with many services using them to match users to products or information. As such it …

AutoDebias: Learning to debias for recommendation

J Chen, H Dong, Y Qiu, X He, X Xin, L Chen… - Proceedings of the 44th …, 2021 - dl.acm.org
Recommender systems rely on user behavior data like ratings and clicks to build
personalization model. However, the collected data is observational rather than …

Socially responsible ai algorithms: Issues, purposes, and challenges

L Cheng, KR Varshney, H Liu - Journal of Artificial Intelligence Research, 2021 - jair.org
In the current era, people and society have grown increasingly reliant on artificial
intelligence (AI) technologies. AI has the potential to drive us towards a future in which all of …

Fairness in information access systems

MD Ekstrand, A Das, R Burke… - Foundations and Trends …, 2022 - nowpublishers.com
Recommendation, information retrieval, and other information access systems pose unique
challenges for investigating and applying the fairness and non-discrimination concepts that …