A review on fairness in machine learning
An increasing number of decisions regarding the daily lives of human beings are being
controlled by artificial intelligence and machine learning (ML) algorithms in spheres ranging …
controlled by artificial intelligence and machine learning (ML) algorithms in spheres ranging …
Evaluating recommender systems: survey and framework
E Zangerle, C Bauer - ACM Computing Surveys, 2022 - dl.acm.org
The comprehensive evaluation of the performance of a recommender system is a complex
endeavor: many facets need to be considered in configuring an adequate and effective …
endeavor: many facets need to be considered in configuring an adequate and effective …
A survey on the fairness of recommender systems
Recommender systems are an essential tool to relieve the information overload challenge
and play an important role in people's daily lives. Since recommendations involve …
and play an important role in people's daily lives. Since recommendations involve …
Bias and debias in recommender system: A survey and future directions
While recent years have witnessed a rapid growth of research papers on recommender
system (RS), most of the papers focus on inventing machine learning models to better fit …
system (RS), most of the papers focus on inventing machine learning models to better fit …
Algorithmic content moderation: Technical and political challenges in the automation of platform governance
As government pressure on major technology companies builds, both firms and legislators
are searching for technical solutions to difficult platform governance puzzles such as hate …
are searching for technical solutions to difficult platform governance puzzles such as hate …
Fairness in recommendation ranking through pairwise comparisons
A Beutel, J Chen, T Doshi, H Qian, L Wei… - Proceedings of the 25th …, 2019 - dl.acm.org
Recommender systems are one of the most pervasive applications of machine learning in
industry, with many services using them to match users to products or information. As such it …
industry, with many services using them to match users to products or information. As such it …
AutoDebias: Learning to debias for recommendation
Recommender systems rely on user behavior data like ratings and clicks to build
personalization model. However, the collected data is observational rather than …
personalization model. However, the collected data is observational rather than …
Socially responsible ai algorithms: Issues, purposes, and challenges
In the current era, people and society have grown increasingly reliant on artificial
intelligence (AI) technologies. AI has the potential to drive us towards a future in which all of …
intelligence (AI) technologies. AI has the potential to drive us towards a future in which all of …
Fairness in information access systems
Recommendation, information retrieval, and other information access systems pose unique
challenges for investigating and applying the fairness and non-discrimination concepts that …
challenges for investigating and applying the fairness and non-discrimination concepts that …