Weighted random k satisfiability for k= 1, 2 (r2SAT) in discrete Hopfield neural network
Current studies on non-systematic satisfiability in Discrete Hopfield Neural Network are able
to avoid production of repetitive final neuron states which improves the quality of global …
to avoid production of repetitive final neuron states which improves the quality of global …
[HTML][HTML] Novel logic mining incorporating log linear approach
Mining the best logical rule from the data is a challenging task because not all attribute of the
dataset will contribute towards the optimal logical representation. Even if the correct …
dataset will contribute towards the optimal logical representation. Even if the correct …
Supervised learning perspective in logic mining
Creating optimal logic mining is strongly dependent on how the learning data are structured.
Without optimal data structure, intelligence systems integrated into logic mining, such as an …
Without optimal data structure, intelligence systems integrated into logic mining, such as an …
YRAN2SAT: A novel flexible random satisfiability logical rule in discrete hopfield neural network
The current development of the satisfiability logical representation in Discrete Hopfield
Neural Network has two prominent perspectives which are systematic and non-systematic …
Neural Network has two prominent perspectives which are systematic and non-systematic …
PRO2SAT: Systematic probabilistic satisfiability logic in discrete hopfield neural network
Satisfiability is prominent in the field of computer science and mathematics because SAT
provides an alternative to represent the knowledge of any datasets. Fueled by this nature …
provides an alternative to represent the knowledge of any datasets. Fueled by this nature …
Multi-discrete genetic algorithm in hopfield neural network with weighted random k satisfiability
Abstract The existing Discrete Hopfield Neural Network with systematic Satisfiability models
produced repetition of final neuron states which promotes to overfitting global minima …
produced repetition of final neuron states which promotes to overfitting global minima …
Random satisfiability: A higher-order logical approach in discrete Hopfield Neural Network
A conventional systematic satisfiability logic suffers from a nonflexible logical structure that
leads to a lack of interpretation. To resolve this problem, the advantage of introducing …
leads to a lack of interpretation. To resolve this problem, the advantage of introducing …
[HTML][HTML] Multi-unit Discrete Hopfield Neural Network for higher order supervised learning through logic mining: Optimal performance design and attribute selection
In the perspective of logic mining, the attribute selection, and the objective function of the
best logic is the two main factors that identifies the effectiveness of our proposed logic …
best logic is the two main factors that identifies the effectiveness of our proposed logic …
[PDF][PDF] Hybrid Genetic Algorithm in the Hopfield Network for Logic Satisfiability Problem.
MSM Kasihmuddin, MA Mansor… - Pertanika Journal of …, 2017 - pertanika.upm.edu.my
In this study, a hybrid approach that employs Hopfield neural network and a genetic
algorithm in doing k-SAT problems was proposed. The Hopfield neural network was used to …
algorithm in doing k-SAT problems was proposed. The Hopfield neural network was used to …
Amazon employees resources access data extraction via clonal selection algorithm and logic mining approach
Amazon. com Inc. seeks alternative ways to improve manual transactions system of granting
employees resources access in the field of data science. The work constructs a modified …
employees resources access in the field of data science. The work constructs a modified …