Graph neural networks for graphs with heterophily: A survey

X Zheng, Y Wang, Y Liu, M Li, M Zhang, D Jin… - arXiv preprint arXiv …, 2022 - arxiv.org
Recent years have witnessed fast developments of graph neural networks (GNNs) that have
benefited myriads of graph analytic tasks and applications. In general, most GNNs depend …

Vital nodes identification in complex networks

L Lü, D Chen, XL Ren, QM Zhang, YC Zhang, T Zhou - Physics reports, 2016 - Elsevier
Real networks exhibit heterogeneous nature with nodes playing far different roles in
structure and function. To identify vital nodes is thus very significant, allowing us to control …

Finding global homophily in graph neural networks when meeting heterophily

X Li, R Zhu, Y Cheng, C Shan, S Luo… - International …, 2022 - proceedings.mlr.press
We investigate graph neural networks on graphs with heterophily. Some existing methods
amplify a node's neighborhood with multi-hop neighbors to include more nodes with …

Large scale learning on non-homophilous graphs: New benchmarks and strong simple methods

D Lim, F Hohne, X Li, SL Huang… - Advances in …, 2021 - proceedings.neurips.cc
Many widely used datasets for graph machine learning tasks have generally been
homophilous, where nodes with similar labels connect to each other. Recently, new Graph …

Beyond low-frequency information in graph convolutional networks

D Bo, X Wang, C Shi, H Shen - Proceedings of the AAAI conference on …, 2021 - ojs.aaai.org
Graph neural networks (GNNs) have been proven to be effective in various network-related
tasks. Most existing GNNs usually exploit the low-frequency signals of node features, which …

Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing in gnns

C Bodnar, F Di Giovanni… - Advances in …, 2022 - proceedings.neurips.cc
Cellular sheaves equip graphs with a``geometrical''structure by assigning vector spaces and
linear maps to nodes and edges. Graph Neural Networks (GNNs) implicitly assume a graph …

Beyond homophily in graph neural networks: Current limitations and effective designs

J Zhu, Y Yan, L Zhao, M Heimann… - Advances in neural …, 2020 - proceedings.neurips.cc
We investigate the representation power of graph neural networks in the semi-supervised
node classification task under heterophily or low homophily, ie, in networks where …

Geom-gcn: Geometric graph convolutional networks

H Pei, B Wei, KCC Chang, Y Lei, B Yang - arXiv preprint arXiv:2002.05287, 2020 - arxiv.org
Message-passing neural networks (MPNNs) have been successfully applied to
representation learning on graphs in a variety of real-world applications. However, two …

Two sides of the same coin: Heterophily and oversmoothing in graph convolutional neural networks

Y Yan, M Hashemi, K Swersky, Y Yang… - … Conference on Data …, 2022 - ieeexplore.ieee.org
In node classification tasks, graph convolutional neural networks (GCNs) have
demonstrated competitive performance over traditional methods on diverse graph data …

Node similarity preserving graph convolutional networks

W Jin, T Derr, Y Wang, Y Ma, Z Liu, J Tang - Proceedings of the 14th …, 2021 - dl.acm.org
Graph Neural Networks (GNNs) have achieved tremendous success in various real-world
applications due to their strong ability in graph representation learning. GNNs explore the …