Counting King Permutations on the Cylinder
We call a permutation $\sigma=[\sigma_1,\dots,\sigma_n]\in S_n $ a {\em cylindrical king
permutation} if $|\sigma_i-\sigma_ {i+ 1}|> 1$ for each $1\leq i\leq n-1$ and $|\sigma_1 …
permutation} if $|\sigma_i-\sigma_ {i+ 1}|> 1$ for each $1\leq i\leq n-1$ and $|\sigma_1 …