From anecdotal evidence to quantitative evaluation methods: A systematic review on evaluating explainable ai

M Nauta, J Trienes, S Pathak, E Nguyen… - ACM Computing …, 2023 - dl.acm.org
The rising popularity of explainable artificial intelligence (XAI) to understand high-performing
black boxes raised the question of how to evaluate explanations of machine learning (ML) …

A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation

L Wu, X He, X Wang, K Zhang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Influenced by the great success of deep learning in computer vision and language
understanding, research in recommendation has shifted to inventing new recommender …

Chat-rec: Towards interactive and explainable llms-augmented recommender system

Y Gao, T Sheng, Y Xiang, Y Xiong, H Wang… - arXiv preprint arXiv …, 2023 - arxiv.org
Large language models (LLMs) have demonstrated their significant potential to be applied
for addressing various application tasks. However, traditional recommender systems …

Recommendation as language processing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5)

S Geng, S Liu, Z Fu, Y Ge, Y Zhang - … of the 16th ACM Conference on …, 2022 - dl.acm.org
For a long time, different recommendation tasks require designing task-specific architectures
and training objectives. As a result, it is hard to transfer the knowledge and representations …

Multi-modal self-supervised learning for recommendation

W Wei, C Huang, L Xia, C Zhang - … of the ACM Web Conference 2023, 2023 - dl.acm.org
The online emergence of multi-modal sharing platforms (eg, TikTok, Youtube) is powering
personalized recommender systems to incorporate various modalities (eg, visual, textual …

Personalized prompt learning for explainable recommendation

L Li, Y Zhang, L Chen - ACM Transactions on Information Systems, 2023 - dl.acm.org
Providing user-understandable explanations to justify recommendations could help users
better understand the recommended items, increase the system's ease of use, and gain …

Explainable recommendation: A survey and new perspectives

Y Zhang, X Chen - Foundations and Trends® in Information …, 2020 - nowpublishers.com
Explainable recommendation attempts to develop models that generate not only high-quality
recommendations but also intuitive explanations. The explanations may either be post-hoc …

Counterfactual explainable recommendation

J Tan, S Xu, Y Ge, Y Li, X Chen, Y Zhang - Proceedings of the 30th ACM …, 2021 - dl.acm.org
By providing explanations for users and system designers to facilitate better understanding
and decision making, explainable recommendation has been an important research …

Large language models for generative recommendation: A survey and visionary discussions

L Li, Y Zhang, D Liu, L Chen - arXiv preprint arXiv:2309.01157, 2023 - arxiv.org
Recent years have witnessed the wide adoption of large language models (LLM) in different
fields, especially natural language processing and computer vision. Such a trend can also …

A review on explainability in multimodal deep neural nets

G Joshi, R Walambe, K Kotecha - IEEE Access, 2021 - ieeexplore.ieee.org
Artificial Intelligence techniques powered by deep neural nets have achieved much success
in several application domains, most significantly and notably in the Computer Vision …