Graph neural networks for graphs with heterophily: A survey

X Zheng, Y Wang, Y Liu, M Li, M Zhang, D Jin… - arXiv preprint arXiv …, 2022 - arxiv.org
Recent years have witnessed fast developments of graph neural networks (GNNs) that have
benefited myriads of graph analytic tasks and applications. In general, most GNNs depend …

Revisiting heterophily for graph neural networks

S Luan, C Hua, Q Lu, J Zhu, M Zhao… - Advances in neural …, 2022 - proceedings.neurips.cc
Abstract Graph Neural Networks (GNNs) extend basic Neural Networks (NNs) by using
graph structures based on the relational inductive bias (homophily assumption). While …

Finding global homophily in graph neural networks when meeting heterophily

X Li, R Zhu, Y Cheng, C Shan, S Luo… - International …, 2022 - proceedings.mlr.press
We investigate graph neural networks on graphs with heterophily. Some existing methods
amplify a node's neighborhood with multi-hop neighbors to include more nodes with …

Large scale learning on non-homophilous graphs: New benchmarks and strong simple methods

D Lim, F Hohne, X Li, SL Huang… - Advances in …, 2021 - proceedings.neurips.cc
Many widely used datasets for graph machine learning tasks have generally been
homophilous, where nodes with similar labels connect to each other. Recently, new Graph …

Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing in gnns

C Bodnar, F Di Giovanni… - Advances in …, 2022 - proceedings.neurips.cc
Cellular sheaves equip graphs with a``geometrical''structure by assigning vector spaces and
linear maps to nodes and edges. Graph Neural Networks (GNNs) implicitly assume a graph …

A critical look at the evaluation of GNNs under heterophily: Are we really making progress?

O Platonov, D Kuznedelev, M Diskin… - arXiv preprint arXiv …, 2023 - arxiv.org
Node classification is a classical graph representation learning task on which Graph Neural
Networks (GNNs) have recently achieved strong results. However, it is often believed that …

Graph neural networks with heterophily

J Zhu, RA Rossi, A Rao, T Mai, N Lipka… - Proceedings of the …, 2021 - ojs.aaai.org
Abstract Graph Neural Networks (GNNs) have proven to be useful for many different
practical applications. However, many existing GNN models have implicitly assumed …

Demystifying structural disparity in graph neural networks: Can one size fit all?

H Mao, Z Chen, W Jin, H Han, Y Ma… - Advances in neural …, 2024 - proceedings.neurips.cc
Abstract Recent studies on Graph Neural Networks (GNNs) provide both empirical and
theoretical evidence supporting their effectiveness in capturing structural patterns on both …

An empirical study of graph contrastive learning

Y Zhu, Y Xu, Q Liu, S Wu - arXiv preprint arXiv:2109.01116, 2021 - arxiv.org
Graph Contrastive Learning (GCL) establishes a new paradigm for learning graph
representations without human annotations. Although remarkable progress has been …

[PDF][PDF] Deep graph structure learning for robust representations: A survey

Y Zhu, W Xu, J Zhang, Q Liu, S Wu… - arXiv preprint arXiv …, 2021 - researchgate.net
Abstract Graph Neural Networks (GNNs) are widely used for analyzing graph-structured
data. Most GNN methods are highly sensitive to the quality of graph structures and usually …