Enumeration of three-quadrant walks via invariants: some diagonally symmetric models
M Bousquet-Mélou - Canadian Journal of Mathematics, 2023 - cambridge.org
Enumeration of three-quadrant walks via invariants: some diagonally symmetric models Page 1
Canad. J. Math. 2022, pp. 1–67 http://dx.doi.org/10.4153/S0008414X22000487 © The …
Canad. J. Math. 2022, pp. 1–67 http://dx.doi.org/10.4153/S0008414X22000487 © The …
Stable random walks in cones
In this paper we consider a multidimensional random walk killed on leaving a right circular
cone with a distribution of increments belonging to the normal domain of attraction of an …
cone with a distribution of increments belonging to the normal domain of attraction of an …
Constructing discrete harmonic functions in wedges
V Hoang, K Raschel, P Tarrago - Transactions of the American …, 2022 - ams.org
We propose a systematic construction of signed harmonic functions for discrete Laplacian
operators with Dirichlet conditions in the quarter plane. In particular, we prove that the set of …
operators with Dirichlet conditions in the quarter plane. In particular, we prove that the set of …
Harmonic functions for singular quadrant walks
VH Hoang, K Raschel, P Tarrago - Indagationes Mathematicae, 2023 - Elsevier
We consider discrete (time and space) random walks confined to the quarter plane, with
jumps only in directions (i, j) with i+ j≥ 0 and small negative jumps, ie, i, j≥− 1. These walks …
jumps only in directions (i, j) with i+ j≥ 0 and small negative jumps, ie, i, j≥− 1. These walks …
Martin boundary of a degenerate Reflected Brownian Motion in a wedge
M Petit - arXiv preprint arXiv:2411.02156, 2024 - arxiv.org
We consider an outward degenerate drifted Brownian motion in the quarter plane with
oblique reflections on the boundaries. In this article, we explicitly compute the Laplace …
oblique reflections on the boundaries. In this article, we explicitly compute the Laplace …
Harmonic measure in a multidimensional gambler's problem
We consider a random walk in a truncated cone KN, which is obtained by slicing cone K by a
hyperplane at a growing level of order N. We study the behaviour of the Green function in …
hyperplane at a growing level of order N. We study the behaviour of the Green function in …
Green function for an asymptotically stable random walk in a half space
We consider an asymptotically stable multidimensional random walk S (n)=(S 1 (n),…, S d
(n)). For every vector x=(x 1…, xd) with x 1≥ 0, let τ x:= min {n> 0: x 1+ S 1 (n)≤ 0} be the …
(n)). For every vector x=(x 1…, xd) with x 1≥ 0, let τ x:= min {n> 0: x 1+ S 1 (n)≤ 0} be the …
Asymptotics of the Green function of killed random walks in a cone of
I Ignatiouk-Robert - Electronic Communications in Probability, 2024 - projecteuclid.org
In this paper, we obtain the exact asymptotic behavior of Green functions of homogeneous
random walks in Z d killed at the first exit from and open cone of R d. Our approach …
random walks in Z d killed at the first exit from and open cone of R d. Our approach …
Reflected random walks and unstable Martin boundary
I Ignatiouk-Robert, I Kurkova… - Annales de l'Institut Henri …, 2024 - projecteuclid.org
We introduce a family of two-dimensional reflected random walks in the positive quadrant
and study their Martin boundary. While the minimal boundary is systematically equal to a …
and study their Martin boundary. While the minimal boundary is systematically equal to a …
Marches al\'eatoires dans un c\^ one et fonctions discr\etes harmoniques
K Raschel, P Tarrago - arXiv preprint arXiv:2211.02925, 2022 - arxiv.org
Résumé Les marches aléatoires dans un cône présentent le double attrait de se trouver au
cœur de nombreux problèmes probabilistes et d'être liées à de multiples domaines …
cœur de nombreux problèmes probabilistes et d'être liées à de multiples domaines …