Motion planning for autonomous driving: The state of the art and future perspectives

S Teng, X Hu, P Deng, B Li, Y Li, Y Ai… - IEEE Transactions …, 2023 - ieeexplore.ieee.org
Intelligent vehicles (IVs) have gained worldwide attention due to their increased
convenience, safety advantages, and potential commercial value. Despite predictions of …

Deep reinforcement learning based energy management strategies for electrified vehicles: Recent advances and perspectives

H He, X Meng, Y Wang, A Khajepour, X An… - … and Sustainable Energy …, 2024 - Elsevier
Electrified vehicles provide an effective solution to address the unfavorable impacts of fossil
fuel use in the transportation sector. Energy management strategy (EMS) is the core …

[HTML][HTML] Toward human-in-the-loop AI: Enhancing deep reinforcement learning via real-time human guidance for autonomous driving

J Wu, Z Huang, Z Hu, C Lv - Engineering, 2023 - Elsevier
Due to its limited intelligence and abilities, machine learning is currently unable to handle
various situations thus cannot completely replace humans in real-world applications …

Uncertainty-aware model-based reinforcement learning: Methodology and application in autonomous driving

J Wu, Z Huang, C Lv - IEEE Transactions on Intelligent Vehicles, 2022 - ieeexplore.ieee.org
To further improve learning efficiency and performance of reinforcement learning (RL), a
novel uncertainty-aware model-based RL method is proposed and validated in autonomous …

Differentiable integrated motion prediction and planning with learnable cost function for autonomous driving

Z Huang, H Liu, J Wu, C Lv - IEEE transactions on neural …, 2023 - ieeexplore.ieee.org
Predicting the future states of surrounding traffic participants and planning a safe, smooth,
and socially compliant trajectory accordingly are crucial for autonomous vehicles (AVs) …

Multi-modal motion prediction with transformer-based neural network for autonomous driving

Z Huang, X Mo, C Lv - 2022 International Conference on …, 2022 - ieeexplore.ieee.org
Predicting the behaviors of other agents on the road is critical for autonomous driving to
ensure safety and efficiency. However, the challenging part is how to represent the social …

Towards robust decision-making for autonomous driving on highway

K Yang, X Tang, S Qiu, S Jin, Z Wei… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Reinforcement learning (RL) methods are commonly regarded as effective solutions for
designing intelligent driving policies. Nonetheless, even if the RL policy is converged after …

Deep learning technology for construction machinery and robotics

K You, C Zhou, L Ding - Automation in construction, 2023 - Elsevier
Construction machinery and robots are essential equipment for major infrastructure. The
application of deep learning technology can improve the construction quality and alleviate …

Conditional predictive behavior planning with inverse reinforcement learning for human-like autonomous driving

Z Huang, H Liu, J Wu, C Lv - IEEE Transactions on Intelligent …, 2023 - ieeexplore.ieee.org
Making safe and human-like decisions is an essential capability of autonomous driving
systems, and learning-based behavior planning presents a promising pathway toward …

Rethinking imitation-based planners for autonomous driving

J Cheng, Y Chen, X Mei, B Yang, B Li… - 2024 IEEE International …, 2024 - ieeexplore.ieee.org
In recent years, imitation-based driving planners have reported considerable success.
However, due to the absence of a standardized benchmark, the effectiveness of various …