Deep learning techniques for medical image segmentation: achievements and challenges
Deep learning-based image segmentation is by now firmly established as a robust tool in
image segmentation. It has been widely used to separate homogeneous areas as the first …
image segmentation. It has been widely used to separate homogeneous areas as the first …
Understanding deep learning techniques for image segmentation
The machine learning community has been overwhelmed by a plethora of deep learning--
based approaches. Many challenging computer vision tasks, such as detection, localization …
based approaches. Many challenging computer vision tasks, such as detection, localization …
Unetr: Transformers for 3d medical image segmentation
Abstract Fully Convolutional Neural Networks (FCNNs) with contracting and expanding
paths have shown prominence for the majority of medical image segmentation applications …
paths have shown prominence for the majority of medical image segmentation applications …
[HTML][HTML] Potential, challenges and future directions for deep learning in prognostics and health management applications
Deep learning applications have been thriving over the last decade in many different
domains, including computer vision and natural language understanding. The drivers for the …
domains, including computer vision and natural language understanding. The drivers for the …
[HTML][HTML] A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease
Alzheimer's disease (AD) is a progressive and irreversible brain degenerative disorder. Mild
cognitive impairment (MCI) is a clinical precursor of AD. Although some treatments can …
cognitive impairment (MCI) is a clinical precursor of AD. Although some treatments can …
Deep learning applications in medical image analysis
The tremendous success of machine learning algorithms at image recognition tasks in
recent years intersects with a time of dramatically increased use of electronic medical …
recent years intersects with a time of dramatically increased use of electronic medical …
A survey on deep learning in medical image analysis
Deep learning algorithms, in particular convolutional networks, have rapidly become a
methodology of choice for analyzing medical images. This paper reviews the major deep …
methodology of choice for analyzing medical images. This paper reviews the major deep …
Evaluate the malignancy of pulmonary nodules using the 3-d deep leaky noisy-or network
Automatic diagnosing lung cancer from computed tomography scans involves two steps:
detect all suspicious lesions (pulmonary nodules) and evaluate the whole-lung/pulmonary …
detect all suspicious lesions (pulmonary nodules) and evaluate the whole-lung/pulmonary …
Machine learning techniques for biomedical image segmentation: an overview of technical aspects and introduction to state‐of‐art applications
H Seo, M Badiei Khuzani, V Vasudevan… - Medical …, 2020 - Wiley Online Library
In recent years, significant progress has been made in developing more accurate and
efficient machine learning algorithms for segmentation of medical and natural images. In this …
efficient machine learning algorithms for segmentation of medical and natural images. In this …
A review on the use of deep learning for medical images segmentation
M Aljabri, M AlGhamdi - Neurocomputing, 2022 - Elsevier
Deep learning (DL) algorithms have rapidly become a robust tool for analyzing medical
images. They have been used extensively for medical image segmentation as the first and …
images. They have been used extensively for medical image segmentation as the first and …