Domain generalization: A survey

K Zhou, Z Liu, Y Qiao, T Xiang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet
challenging for machines to reproduce. This is because most learning algorithms strongly …

A survey on data augmentation for text classification

M Bayer, MA Kaufhold, C Reuter - ACM Computing Surveys, 2022 - dl.acm.org
Data augmentation, the artificial creation of training data for machine learning by
transformations, is a widely studied research field across machine learning disciplines …

Continual test-time domain adaptation

Q Wang, O Fink, L Van Gool… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Test-time domain adaptation aims to adapt a source pre-trained model to a target domain
without using any source data. Existing works mainly consider the case where the target …

A survey of zero-shot generalisation in deep reinforcement learning

R Kirk, A Zhang, E Grefenstette, T Rocktäschel - Journal of Artificial …, 2023 - jair.org
The study of zero-shot generalisation (ZSG) in deep Reinforcement Learning (RL) aims to
produce RL algorithms whose policies generalise well to novel unseen situations at …

Isaac gym: High performance gpu-based physics simulation for robot learning

V Makoviychuk, L Wawrzyniak, Y Guo, M Lu… - arXiv preprint arXiv …, 2021 - arxiv.org
Isaac Gym offers a high performance learning platform to train policies for wide variety of
robotics tasks directly on GPU. Both physics simulation and the neural network policy …

Legged locomotion in challenging terrains using egocentric vision

A Agarwal, A Kumar, J Malik… - Conference on robot …, 2023 - proceedings.mlr.press
Animals are capable of precise and agile locomotion using vision. Replicating this ability
has been a long-standing goal in robotics. The traditional approach has been to decompose …

Learning agile soccer skills for a bipedal robot with deep reinforcement learning

T Haarnoja, B Moran, G Lever, SH Huang… - Science Robotics, 2024 - science.org
We investigated whether deep reinforcement learning (deep RL) is able to synthesize
sophisticated and safe movement skills for a low-cost, miniature humanoid robot that can be …

Generalizing to unseen domains: A survey on domain generalization

J Wang, C Lan, C Liu, Y Ouyang, T Qin… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Machine learning systems generally assume that the training and testing distributions are
the same. To this end, a key requirement is to develop models that can generalize to unseen …

Neural-fly enables rapid learning for agile flight in strong winds

M O'Connell, G Shi, X Shi, K Azizzadenesheli… - Science Robotics, 2022 - science.org
Executing safe and precise flight maneuvers in dynamic high-speed winds is important for
the ongoing commoditization of uninhabited aerial vehicles (UAVs). However, because the …

Rma: Rapid motor adaptation for legged robots

A Kumar, Z Fu, D Pathak, J Malik - arXiv preprint arXiv:2107.04034, 2021 - arxiv.org
Successful real-world deployment of legged robots would require them to adapt in real-time
to unseen scenarios like changing terrains, changing payloads, wear and tear. This paper …