Image super-resolution: A comprehensive review, recent trends, challenges and applications

DC Lepcha, B Goyal, A Dogra, V Goyal - Information Fusion, 2023 - Elsevier
Super resolution (SR) is an eminent system in the field of computer vison and image
processing to improve the visual perception of the poor-quality images. The key objective of …

A deep journey into super-resolution: A survey

S Anwar, S Khan, N Barnes - ACM Computing Surveys (CSUR), 2020 - dl.acm.org
Deep convolutional networks–based super-resolution is a fast-growing field with numerous
practical applications. In this exposition, we extensively compare more than 30 state-of-the …

Scaling up gans for text-to-image synthesis

M Kang, JY Zhu, R Zhang, J Park… - Proceedings of the …, 2023 - openaccess.thecvf.com
The recent success of text-to-image synthesis has taken the world by storm and captured the
general public's imagination. From a technical standpoint, it also marked a drastic change in …

From degrade to upgrade: Learning a self-supervised degradation guided adaptive network for blind remote sensing image super-resolution

Y Xiao, Q Yuan, K Jiang, J He, Y Wang, L Zhang - Information Fusion, 2023 - Elsevier
Over the past few years, single image super-resolution (SR) has become a hotspot in the
remote sensing area, and numerous methods have made remarkable progress in this …

Restormer: Efficient transformer for high-resolution image restoration

SW Zamir, A Arora, S Khan, M Hayat… - Proceedings of the …, 2022 - openaccess.thecvf.com
Since convolutional neural networks (CNNs) perform well at learning generalizable image
priors from large-scale data, these models have been extensively applied to image …

Image super-resolution via iterative refinement

C Saharia, J Ho, W Chan, T Salimans… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
We present SR3, an approach to image Super-Resolution via Repeated Refinement. SR3
adapts denoising diffusion probabilistic models (Ho et al. 2020),(Sohl-Dickstein et al. 2015) …

Hinet: Half instance normalization network for image restoration

L Chen, X Lu, J Zhang, X Chu… - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
In this paper, we explore the role of Instance Normalization in low-level vision tasks.
Specifically, we present a novel block: Half Instance Normalization Block (HIN Block), to …

Multi-stage progressive image restoration

SW Zamir, A Arora, S Khan, M Hayat… - Proceedings of the …, 2021 - openaccess.thecvf.com
Image restoration tasks demand a complex balance between spatial details and high-level
contextualized information while recovering images. In this paper, we propose a novel …

Pre-trained image processing transformer

H Chen, Y Wang, T Guo, C Xu… - Proceedings of the …, 2021 - openaccess.thecvf.com
As the computing power of modern hardware is increasing strongly, pre-trained deep
learning models (eg, BERT, GPT-3) learned on large-scale datasets have shown their …

Details or artifacts: A locally discriminative learning approach to realistic image super-resolution

J Liang, H Zeng, L Zhang - … of the IEEE/CVF Conference on …, 2022 - openaccess.thecvf.com
Single image super-resolution (SISR) with generative adversarial networks (GAN) has
recently attracted increasing attention due to its potentials to generate rich details. However …