Scaling limit of the odometer in divisible sandpiles

A Cipriani, RS Hazra, WM Ruszel - Probability theory and related fields, 2018 - Springer
In a recent work Levine et al.(Ann Henri Poincaré 17: 1677–1711, 2016. https://doi.
org/10.1007/s00023-015-0433-x) prove that the odometer function of a divisible sandpile …

moments suffice to characterise the GFF

N Berestycki, E Powell, G Ray - 2021 - projecteuclid.org
We show that there is “no stable free field of index α∈(1, 2)”, in the following sense. It was
proved in [4] that subject to a fourth moment assumption, any random generalised function …

Scaling limits in divisible sandpiles: a Fourier multiplier approach

A Cipriani, J de Graaff, WM Ruszel - Journal of Theoretical Probability, 2020 - Springer
In this paper we investigate scaling limits of the odometer in divisible sandpiles on d-
dimensional tori following up the works of Chiarini et al.(Odometer of long-range sandpiles …

Odometers of Divisible Sandpile Models: Scaling Limits, iDLA and Obstacle Problems. A Survey

WM Ruszel - arXiv preprint arXiv:1903.06263, 2019 - arxiv.org
The divisible sandpile model is a fixed-energy continuous counterpart of the Abelian
sandpile model. We start with a random initial configuration and redistribute mass …

[PDF][PDF] Phase Transitions and Near-Critical Phenomena in the Abelian Sandpile Model

RK McDermott - 2021 - ecommons.cornell.edu
In chapter 2 we investigate the behavior around the fixed-energy sandpile's phase transition
as conjectured in [9]. In the course of our investigations we define a supercritical threshold …

[PDF][PDF] The Convergence Speed of Sub-critical Divisible Sandpiles (Nederlandse titel: De Convergeer Snelheid van Sub-critieke Divisible Sandpiles)

TJM Schuttenbeld - 2021 - repository.tudelft.nl
The Convergence Speed of Sub-critical Divisible Sandpiles (Nederlandse titel: De
Convergeer Snelheid van Sub-critieke Divisible Page 1 Technische Universiteit Delft …

-moments suffice to characterise the GFF

N Berestycki, E Powell, G Ray - arXiv preprint arXiv:2005.02349, 2020 - arxiv.org
We show that there is" no stable free field of index $\alpha\in (1, 2) $", in the following sense.
It was proved in a previous work by the authors, that subject to a\emph {fourth moment …