A high throughput in-MRAM-computing scheme using hybrid p-SOT-MTJ/GAA-CNTFET

Z Tong, Y Xu, Y Liu, X Duan, H Tang… - … on Circuits and …, 2023 - ieeexplore.ieee.org
Silicon-based semiconductor transistors are approaching their physical limits due to
shrinking feature sizes. Simultaneously, traditional silicon-based von Neumann …

A low-energy DMTJ-based ternary content-addressable memory with reliable sub-nanosecond search operation

E Garzón, L Yavits, G Finocchio, M Carpentieri… - IEEE …, 2023 - ieeexplore.ieee.org
In this paper, we propose an energy-efficient, reliable, hybrid, 10-transistor/2-Double-Barrier-
Magnetic-Tunnel-Junction (10T2DMTJ) non-volatile (NV) ternary content-addressable …

Area and Energy Efficient Short-Circuit-Logic-Based STT-MRAM Crossbar Array for Binary Neural Networks

C Wang, Z Wang, Z Zhang, Y Zhang… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Spin-transfer-torque magnetoresistive random-access memory (STT-MRAM) is a promising
candidate for future memory systems, however, implementing highly parallel neuro-inspired …

Low-Power Adiabatic/MTJ LIM-Based XNOR/XOR Synapse and Neuron for Binarized Neural Networks

MT Nasab, H Thapliyal - 2023 IEEE 23rd International …, 2023 - ieeexplore.ieee.org
Using binarized neural network (BNN) as an alternative to the conventional convolutional
neural network is a promising candidate to answer the demand of using human brain …

RSACIM: Resistance Summation Analog Computing in Memory With Accuracy Optimization Scheme Based on MRAM

J Wang, Z Gu, B Zhang, Y Chen, Z Wang… - … on Circuits and …, 2023 - ieeexplore.ieee.org
Computing in memory (CIM) has become a promising candidate to address the Von
Neumann bottleneck in processors designed for data-intensive applications. In this article …

SIMPLY+: A Reliable STT-MRAM Based Smart Material Implication Architecture For In-Memory Computing

T Moposita, E Garzón, R De Rose, F Crupi… - IEEE …, 2023 - ieeexplore.ieee.org
This paper introduces SIMPLY+, an advanced Spin-Transfer Torque Magnetic Random-
Access Memory (STT-MRAM)-based Logic-in-Memory (LIM) architecture that evolves from …

An Introduction to Deep Learning

KS Mohamed - … : Autonomous Driving, Artificial Intelligence of Things …, 2023 - Springer
Abstract Machine learning (ML) algorithms try to learn the mapping from an input to output
from data rather than through explicit programming. ML uses algorithms that iteratively learn …

[PDF][PDF] 基于压控自旋轨道矩磁性随机存储器的存内计算全加器设计

刘晓, 刘迪军, 张有光, 罗力川, 康旺 - 电子与信息学报, 2023 - jeit.ac.cn
随着互补金属氧化物半导体技术的特征尺寸的不断缩小, 其面临的静态功耗问题缩越来越突出.
自旋磁随机存储器(MRAM) 由于其非易失性, 高速读写能力, 高集成密度和CMOS …

High-Performance STT-MRAM-Based Computing-in-Memory Scheme Utilizing Data Read Feature

B Wu, K Liu, T Yu, H Zhu, K Chen, C Yan… - IEEE Transactions …, 2023 - ieeexplore.ieee.org
With the development of Artificial Intelligence (AI) and Binary neural networks (BNN), the
computing efficiency of the computing system is expected to be much better, however …

A Multiphysical Field Dynamic Behavioral Model of Perpendicular STT‐MTJ

W Jianyu, Z Yifei, Z Hongli - IET Circuits, Devices & Systems, 2024 - Wiley Online Library
The spin transfer tunnel magnetic tunnel junction (STT‐MTJ) has been widely used in
computers, memory, and other fields because of its nonvolatility, low power consumption …