D'ya like dags? a survey on structure learning and causal discovery

MJ Vowels, NC Camgoz, R Bowden - ACM Computing Surveys, 2022 - dl.acm.org
Causal reasoning is a crucial part of science and human intelligence. In order to discover
causal relationships from data, we need structure discovery methods. We provide a review …

A survey of Bayesian Network structure learning

NK Kitson, AC Constantinou, Z Guo, Y Liu… - Artificial Intelligence …, 2023 - Springer
Abstract Bayesian Networks (BNs) have become increasingly popular over the last few
decades as a tool for reasoning under uncertainty in fields as diverse as medicine, biology …

[图书][B] Elements of causal inference: foundations and learning algorithms

J Peters, D Janzing, B Schölkopf - 2017 - library.oapen.org
A concise and self-contained introduction to causal inference, increasingly important in data
science and machine learning. The mathematization of causality is a relatively recent …

Estimating individual treatment effect: generalization bounds and algorithms

U Shalit, FD Johansson… - … conference on machine …, 2017 - proceedings.mlr.press
There is intense interest in applying machine learning to problems of causal inference in
fields such as healthcare, economics and education. In particular, individual-level causal …

Differentiable causal discovery from interventional data

P Brouillard, S Lachapelle, A Lacoste… - Advances in …, 2020 - proceedings.neurips.cc
Learning a causal directed acyclic graph from data is a challenging task that involves
solving a combinatorial problem for which the solution is not always identifiable. A new line …

Causal discovery and inference: concepts and recent methodological advances

P Spirtes, K Zhang - Applied informatics, 2016 - Springer
This paper aims to give a broad coverage of central concepts and principles involved in
automated causal inference and emerging approaches to causal discovery from iid data and …

A survey on causal discovery: theory and practice

A Zanga, E Ozkirimli, F Stella - International Journal of Approximate …, 2022 - Elsevier
Understanding the laws that govern a phenomenon is the core of scientific progress. This is
especially true when the goal is to model the interplay between different aspects in a causal …

Root cause analysis of failures in microservices through causal discovery

A Ikram, S Chakraborty, S Mitra… - Advances in …, 2022 - proceedings.neurips.cc
Most cloud applications use a large number of smaller sub-components (called
microservices) that interact with each other in the form of a complex graph to provide the …

Structure learning in graphical modeling

M Drton, MH Maathuis - Annual Review of Statistics and Its …, 2017 - annualreviews.org
A graphical model is a statistical model that is associated with a graph whose nodes
correspond to variables of interest. The edges of the graph reflect allowed conditional …

Joint causal inference from multiple contexts

JM Mooij, S Magliacane, T Claassen - Journal of machine learning …, 2020 - jmlr.org
The gold standard for discovering causal relations is by means of experimentation. Over the
last decades, alternative methods have been proposed that can infer causal relations …