Opportunities of flexible and portable electrochemical devices for energy storage: expanding the spotlight onto semi-solid/solid electrolytes

X Fan, C Zhong, J Liu, J Ding, Y Deng, X Han… - Chemical …, 2022 - ACS Publications
The ever-increasing demand for flexible and portable electronics has stimulated research
and development in building advanced electrochemical energy devices which are …

Advanced nanocellulose‐based composites for flexible functional energy storage devices

T Xu, H Du, H Liu, W Liu, X Zhang, C Si… - Advanced …, 2021 - Wiley Online Library
With the increasing demand for wearable electronics (such as smartwatch equipment,
wearable health monitoring systems, and human–robot interface units), flexible energy …

Advances in lithium–sulfur batteries: from academic research to commercial viability

Y Chen, T Wang, H Tian, D Su, Q Zhang… - Advanced …, 2021 - Wiley Online Library
Lithium‐ion batteries, which have revolutionized portable electronics over the past three
decades, were eventually recognized with the 2019 Nobel Prize in chemistry. As the energy …

Toward dendrite-free metallic lithium anodes: from structural design to optimal electrochemical diffusion kinetics

J Wang, L Li, H Hu, H Hu, Q Guan, M Huang, L Jia… - ACS …, 2022 - ACS Publications
Lithium metal anodes are ideal for realizing high-energy-density batteries owing to their
advantages, namely high capacity and low reduction potentials. However, the utilization of …

MXene‐Based Current Collectors for Advanced Rechargeable Batteries

Z Wang, C Wei, H Jiang, Y Zhang, K Tian… - Advanced …, 2024 - Wiley Online Library
As an indispensable component of rechargeable batteries, the current collector plays a
crucial role in supporting the electrode materials and collecting the accumulated electrical …

Recent progress of separators in lithium-sulfur batteries

C Li, R Liu, Y Xiao, F Cao, H Zhang - Energy Storage Materials, 2021 - Elsevier
Abstract Lithium-sulfur (Li-S) batteries have attracted considerable attention due to their
advantages, such as high specific capacity, high energy density, environmental friendliness …

Current status and future prospects of metal–sulfur batteries

SH Chung, A Manthiram - Advanced Materials, 2019 - Wiley Online Library
Lithium–sulfur batteries are a major focus of academic and industrial energy‐storage
research due to their high theoretical energy density and the use of low‐cost materials. The …

Conductive and catalytic triple‐phase interfaces enabling uniform nucleation in high‐rate lithium–sulfur batteries

H Yuan, HJ Peng, BQ Li, J Xie, L Kong… - Advanced Energy …, 2019 - Wiley Online Library
Rechargeable lithium–sulfur batteries have attracted tremendous scientific attention owing
to their superior energy density. However, the sulfur electrochemistry involves multielectron …

Tuning the Band Structure of MoS2 via Co9S8@MoS2 Core–Shell Structure to Boost Catalytic Activity for Lithium–Sulfur Batteries

B Li, Q Su, L Yu, J Zhang, G Du, D Wang, D Han… - ACS …, 2020 - ACS Publications
The introduction of a dual-functional interlayer into lithium–sulfur batteries (LSBs) provides
many opportunities for restraining the “shuttle effect” and enhancing sluggish sulfur …

Electrode design for lithium–sulfur batteries: problems and solutions

L Huang, J Li, B Liu, Y Li, S Shen… - Advanced Functional …, 2020 - Wiley Online Library
Pursuit of advanced batteries with high‐energy density is one of the eternal goals for
electrochemists. Over the past decades, lithium–sulfur batteries (LSBs) have gained world …