Weyl law for the Anderson Hamiltonian on a two-dimensional manifold

A Mouzard - Annales de l'Institut Henri Poincaré (B) Probabilités et …, 2022 - projecteuclid.org
Abstract We define the Anderson Hamiltonian H on a two-dimensional manifold using the
high order paracontrolled calculus. It is a self-adjoint operator with pure point spectrum. We …

[PDF][PDF] Anderson Hamiltonian and associated Nonlinear Stochastic Wave and Schr\" odinger equations in the full space

BE Ugurcan - arXiv preprint arXiv:2208.09352, 2022 - arxiv.org
arXiv:2208.09352v1 [math.AP] 19 Aug 2022 Page 1 arXiv:2208.09352v1 [math.AP] 19 Aug 2022
Anderson Hamiltonian and associated Nonlinear Stochastic Wave and Schrödinger equations …

Analysis of the Anderson operator

I Bailleul, NV Dang, A Mouzard - arXiv preprint arXiv:2201.04705, 2022 - arxiv.org
We consider the continuous Anderson operator $ H=\Delta+\xi $ on a two dimensional
closed Riemannian manifold $\mathcal {S} $. We provide a short self-contained functional …

Longtime asymptotics of the two-dimensional parabolic Anderson model with white-noise potential

W König, N Perkowski… - Annales de l'Institut Henri …, 2022 - projecteuclid.org
We consider the parabolic Anderson model (PAM)∂ tu= 1 2 Δ u+ ξ u in R 2 with a Gaussian
(space) white-noise potential ξ. We prove that the almost-sure large-time asymptotic …

[HTML][HTML] Global well-posedness of the 2D nonlinear Schrödinger equation with multiplicative spatial white noise on the full space

A Debussche, R Liu, N Tzvetkov, N Visciglia - Probability Theory and …, 2024 - Springer
We consider the nonlinear Schrödinger equation with multiplicative spatial white noise and
an arbitrary polynomial nonlinearity on the two-dimensional full space domain. We prove …

An additive noise approximation to keller-segel-dean-kawasaki dynamics part i: Local well-posedness of paracontrolled solutions

A Martini, A Mayorcas - arXiv preprint arXiv:2207.10711, 2022 - arxiv.org
Using the method of paracontrolled distributions, we show the local well-posedness of an
additive noise approximation to the fluctuating hydrodynamics of the Keller-Segel model on …

Paracontrolled calculus for quasilinear singular PDEs

I Bailleul, A Mouzard - … and Partial Differential Equations: Analysis and …, 2023 - Springer
We develop further in this work the high order paracontrolled calculus setting to deal with the
analytic part of the study of quasilinear singular PDEs. Continuity results for a number of …

Anderson localization for the 1-d Schrödinger operator with white noise potential

L Dumaz, C Labbé - Journal of Functional Analysis, 2024 - Elsevier
We consider the random Schrödinger operator on R obtained by perturbing the Laplacian
with a white noise. We prove that Anderson localization holds for this operator: almost surely …

A simple construction of the Anderson operator via its quadratic form in dimensions two and three

A Mouzard, EM Ouhabaz - arXiv preprint arXiv:2309.02821, 2023 - arxiv.org
We provide a simple construction of the Anderson operator in dimensions two and three.
This is done through its quadratic form. We rely on an exponential transform instead of the …

Invariant Gibbs measure for Anderson NLW

N Barashkov, FC De Vecchi, I Zachhuber - arXiv preprint arXiv …, 2023 - arxiv.org
We study the Gaussian measure whose covariance is related to the Anderson Hamiltonian
operator, proving that it admits a regular coupling to the (standard) Gaussian free field …