Power systems optimization under uncertainty: A review of methods and applications

LA Roald, D Pozo, A Papavasiliou, DK Molzahn… - Electric Power Systems …, 2023 - Elsevier
Electric power systems and the companies and customers that interact with them are
experiencing increasing levels of uncertainty due to factors such as renewable energy …

Distributionally robust optimization: A review

H Rahimian, S Mehrotra - arXiv preprint arXiv:1908.05659, 2019 - arxiv.org
The concepts of risk-aversion, chance-constrained optimization, and robust optimization
have developed significantly over the last decade. Statistical learning community has also …

Edge artificial intelligence for 6G: Vision, enabling technologies, and applications

KB Letaief, Y Shi, J Lu, J Lu - IEEE Journal on Selected Areas …, 2021 - ieeexplore.ieee.org
The thriving of artificial intelligence (AI) applications is driving the further evolution of
wireless networks. It has been envisioned that 6G will be transformative and will …

Towards out-of-distribution generalization: A survey

J Liu, Z Shen, Y He, X Zhang, R Xu, H Yu… - arXiv preprint arXiv …, 2021 - arxiv.org
Traditional machine learning paradigms are based on the assumption that both training and
test data follow the same statistical pattern, which is mathematically referred to as …

Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization

S Sagawa, PW Koh, TB Hashimoto, P Liang - arXiv preprint arXiv …, 2019 - arxiv.org
Overparameterized neural networks can be highly accurate on average on an iid test set yet
consistently fail on atypical groups of the data (eg, by learning spurious correlations that …

Computational optimal transport: With applications to data science

G Peyré, M Cuturi - Foundations and Trends® in Machine …, 2019 - nowpublishers.com
Optimal transport (OT) theory can be informally described using the words of the French
mathematician Gaspard Monge (1746–1818): A worker with a shovel in hand has to move a …

Data-enabled predictive control: In the shallows of the DeePC

J Coulson, J Lygeros, F Dörfler - 2019 18th European Control …, 2019 - ieeexplore.ieee.org
We consider the problem of optimal trajectory tracking for unknown systems. A novel data-
enabled predictive control (DeePC) algorithm is presented that computes optimal and safe …

Large-scale methods for distributionally robust optimization

D Levy, Y Carmon, JC Duchi… - Advances in Neural …, 2020 - proceedings.neurips.cc
We propose and analyze algorithms for distributionally robust optimization of convex losses
with conditional value at risk (CVaR) and $\chi^ 2$ divergence uncertainty sets. We prove …

Wasserstein distributionally robust optimization: Theory and applications in machine learning

D Kuhn, PM Esfahani, VA Nguyen… - … science in the age …, 2019 - pubsonline.informs.org
Many decision problems in science, engineering, and economics are affected by uncertain
parameters whose distribution is only indirectly observable through samples. The goal of …

Certifying some distributional robustness with principled adversarial training

A Sinha, H Namkoong, R Volpi, J Duchi - arXiv preprint arXiv:1710.10571, 2017 - arxiv.org
Neural networks are vulnerable to adversarial examples and researchers have proposed
many heuristic attack and defense mechanisms. We address this problem through the …