[HTML][HTML] Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives

H Kabir, K Munir, C Wen, Y Li - Bioactive materials, 2021 - Elsevier
Biodegradable metals (BMs) gradually degrade in vivo by releasing corrosion products once
exposed to the physiological environment in the body. Complete dissolution of …

Surface modification of titanium and titanium alloys: technologies, developments, and future interests

LC Zhang, LY Chen, L Wang - Advanced Engineering Materials, 2020 - Wiley Online Library
Thanks to a considerable number of fascinating properties, titanium (Ti) and Ti alloys play
important roles in a variety of industrial sectors. However, Ti and Ti alloys could not satisfy all …

A review on biomedical titanium alloys: recent progress and prospect

LC Zhang, LY Chen - Advanced engineering materials, 2019 - Wiley Online Library
Compared with stainless steel and Co–Cr‐based alloys, Ti and its alloys are widely used as
biomedical implants due to many fascinating properties, such as superior mechanical …

[HTML][HTML] Towards load-bearing biomedical titanium-based alloys: From essential requirements to future developments

YW Cui, L Wang, LC Zhang - Progress in Materials Science, 2024 - Elsevier
The use of biomedical metallic materials in research and clinical applications has been an
important focus and a significant area of interest, primarily owing to their role in enhancing …

[HTML][HTML] Recent development in beta titanium alloys for biomedical applications

LY Chen, YW Cui, LC Zhang - Metals, 2020 - mdpi.com
β-type titanium (Ti) alloys have attracted a lot of attention as novel biomedical materials in
the past decades due to their low elastic moduli and good biocompatibility. This article …

Additive manufacturing of titanium alloys by electron beam melting: a review

LC Zhang, Y Liu, S Li, Y Hao - Advanced Engineering Materials, 2018 - Wiley Online Library
Electron beam melting (EBM), as one of metal additive manufacturing technologies, is
considered to be an innovative industrial production technology. Based on the layer‐wise …

[HTML][HTML] Selective laser manufacturing of Ti-based alloys and composites: Impact of process parameters, application trends, and future prospects

N Singh, P Hameed, R Ummethala… - Materials today …, 2020 - Elsevier
Aviation and automobile industries demand high strength, fatigue resistant, and wear-
resistant materials in combination with lightweight, especially for structural applications. On …

Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review

H Attar, S Ehtemam-Haghighi, D Kent… - International Journal of …, 2018 - Elsevier
Titanium-based materials are widely used in various areas due to their unique combination
of outstanding characteristics. Properties such as stiffness, strength and wear resistance of …

Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting

YJ Liu, HL Wang, SJ Li, SG Wang, WJ Wang, WT Hou… - Acta Materialia, 2017 - Elsevier
Abstract β-type titanium porous structure is a new class of solution for implant because it
offers excellent combinations of high strength and low Young's modulus. This work …

Additive manufacturing of low-cost porous titanium-based composites for biomedical applications: Advantages, challenges and opinion for future development

H Attar, S Ehtemam-Haghighi, N Soro, D Kent… - Journal of Alloys and …, 2020 - Elsevier
Titanium and its alloys have received considerable attention for biomedical applications
such as orthopaedic implants due to their outstanding mechanical properties and excellent …