A review of the application of deep learning in intelligent fault diagnosis of rotating machinery

Z Zhu, Y Lei, G Qi, Y Chai, N Mazur, Y An, X Huang - Measurement, 2023 - Elsevier
With the rapid development of industry, fault diagnosis plays a more and more important role
in maintaining the health of equipment and ensuring the safe operation of equipment. Due to …

[HTML][HTML] Generative adversarial network: An overview of theory and applications

A Aggarwal, M Mittal, G Battineni - International Journal of Information …, 2021 - Elsevier
In recent times, image segmentation has been involving everywhere including disease
diagnosis to autonomous vehicle driving. In computer vision, this image segmentation is one …

Multi-mode data augmentation and fault diagnosis of rotating machinery using modified ACGAN designed with new framework

W Li, X Zhong, H Shao, B Cai, X Yang - Advanced Engineering Informatics, 2022 - Elsevier
As one of the representative unsupervised data augmentation methods, generative
adversarial networks (GANs) have the potential to solve the problem of insufficient samples …

Intelligent fault diagnosis of machines with small & imbalanced data: A state-of-the-art review and possible extensions

T Zhang, J Chen, F Li, K Zhang, H Lv, S He, E Xu - ISA transactions, 2022 - Elsevier
The research on intelligent fault diagnosis has yielded remarkable achievements based on
artificial intelligence-related technologies. In engineering scenarios, machines usually work …

Industrial artificial intelligence in industry 4.0-systematic review, challenges and outlook

RS Peres, X Jia, J Lee, K Sun, AW Colombo… - IEEE …, 2020 - ieeexplore.ieee.org
The advent of the Industry 4.0 initiative has made it so that manufacturing environments are
becoming more and more dynamic, connected but also inherently more complex, with …

[HTML][HTML] A systematic review of rolling bearing fault diagnoses based on deep learning and transfer learning: Taxonomy, overview, application, open challenges …

M Hakim, AAB Omran, AN Ahmed, M Al-Waily… - Ain Shams Engineering …, 2023 - Elsevier
Rolling bearing fault detection is critical for improving production efficiency and lowering
accident rates in complicated mechanical systems, as well as huge monitoring data, posing …

[HTML][HTML] Potential, challenges and future directions for deep learning in prognostics and health management applications

O Fink, Q Wang, M Svensen, P Dersin, WJ Lee… - … Applications of Artificial …, 2020 - Elsevier
Deep learning applications have been thriving over the last decade in many different
domains, including computer vision and natural language understanding. The drivers for the …

Federated learning for machinery fault diagnosis with dynamic validation and self-supervision

W Zhang, X Li, H Ma, Z Luo, X Li - Knowledge-Based Systems, 2021 - Elsevier
Intelligent data-driven machinery fault diagnosis methods have been successfully and
popularly developed in the past years. While promising diagnostic performance has been …

Deep learning algorithms for rotating machinery intelligent diagnosis: An open source benchmark study

Z Zhao, T Li, J Wu, C Sun, S Wang, R Yan, X Chen - ISA transactions, 2020 - Elsevier
Rotating machinery intelligent diagnosis based on deep learning (DL) has gone through
tremendous progress, which can help reduce costly breakdowns. However, different …

[PDF][PDF] A survey of predictive maintenance: Systems, purposes and approaches

Y Ran, X Zhou, P Lin, Y Wen… - arXiv preprint arXiv …, 2019 - researchgate.net
This paper provides a comprehensive literature review on Predictive Maintenance (PdM)
with emphasis on system architectures, purposes and approaches. In industry, any outages …