Shifted fractional Jacobi collocation method for solving fractional functional differential equations of variable order

MA Abdelkawy, AM Lopes, MM Babatin - Chaos, Solitons & Fractals, 2020 - Elsevier
Abstract Functional differential equations have been widely used for modeling real-world
phenomena in distinct areas of science. However, classical calculus can not provide always …

[HTML][HTML] Complex-order fractional diffusion in reaction-diffusion systems

A Bueno-Orovio, K Burrage - Communications in Nonlinear Science and …, 2023 - Elsevier
Fractional differential equations have become a fundamental modelling approach for
understanding and simulating the many aspects of non-locality and spatial heterogeneity of …

Fractional-order shifted Legendre collocation method for solving non-linear variable-order fractional Fredholm integro-differential equations

MA Abdelkawy, AZM Amin, AM Lopes - Computational and Applied …, 2022 - Springer
Fractional differential equations have been adopted for modeling many real-world problems,
namely those appearing in biological systems since they can capture memory and …

Modeling the functional heterogeneity and conditions for the occurrence of microreentry in procedurally created atrial fibrous tissue

A Kalinin, V Naumov, S Kovalenko… - Journal of Applied …, 2023 - pubs.aip.org
The occurrence of atrial fibrillation (AF), one of the most socially significant arrhythmias, is
associated with the presence of areas of fibrosis. Fibrosis introduces conduction …

Biomimetic Cardiac Tissue Models for In Vitro Arrhythmia Studies

A Aitova, A Berezhnoy, V Tsvelaya, O Gusev… - Biomimetics, 2023 - mdpi.com
Cardiac arrhythmias are a major cause of cardiovascular mortality worldwide. Many
arrhythmias are caused by reentry, a phenomenon where excitation waves circulate in the …

[PDF][PDF] A space-time spectral collocation method for solving the variable-order fractional Fokker-Planck equation

AZ Amin, AM Lopes, I Hashim - J. Appl. Anal. Comput, 2023 - jaac-online.com
A numerical approach for solving the variable-order fractional Fokker-Planck equation (VO-
FFPE) is proposed. The computational scheme is based on the shifted Legendre Gauss …

Stability and dynamics of complex order fractional difference equations

S Bhalekar, PM Gade, D Joshi - Chaos, Solitons & Fractals, 2022 - Elsevier
We extend the definition of n-dimensional difference equations to complex order. We
investigate the stability of linear systems defined by an n-dimensional matrix and derive the …

A space-fractional bidomain framework for cardiac electrophysiology: 1D alternans dynamics

N Cusimano, L Gerardo-Giorda, A Gizzi - Chaos: An Interdisciplinary …, 2021 - pubs.aip.org
Cardiac electrophysiology modeling deals with a complex network of excitable cells forming
an intricate syncytium: the heart. The electrical activity of the heart shows recurrent spatial …

Robust stability analysis of incommensurate fractional-order systems with time-varying interval uncertainties

M Tavazoei, MH Asemani - Journal of the Franklin Institute, 2020 - Elsevier
This paper focuses on the stability analysis of the incommensurate fractional-order systems
describing by the pseudo-state-space form in the presence of interval uncertainties. By using …

[HTML][HTML] Fractional generalization of entropy improves the characterization of rotors in simulated atrial fibrillation

JP Ugarte, JAT Machado, C Tobón - Applied Mathematics and …, 2022 - Elsevier
Atrial fibrillation (AF) underlies disordered spatiotemporal electrical activity, that increases in
complexity with the persistence of the arrhythmia. It has been hypothesized that a specific …