Binary relevance for multi-label learning: an overview

ML Zhang, YK Li, XY Liu, X Geng - Frontiers of Computer Science, 2018 - Springer
Multi-label learning deals with problems where each example is represented by a single
instance while being associated with multiple class labels simultaneously. Binary relevance …

Multilabel feature selection: A comprehensive review and guiding experiments

S Kashef, H Nezamabadi‐pour… - … Reviews: Data Mining …, 2018 - Wiley Online Library
Feature selection has been an important issue in machine learning and data mining, and is
unavoidable when confronting with high‐dimensional data. With the advent of multilabel …

Feature selection using Fisher score and multilabel neighborhood rough sets for multilabel classification

L Sun, T Wang, W Ding, J Xu, Y Lin - Information Sciences, 2021 - Elsevier
In recent years, feature selection for multilabel classification has attracted attention in
machine learning and data mining. However, some feature selection methods ignore the …

Group-preserving label-specific feature selection for multi-label learning

J Zhang, H Wu, M Jiang, J Liu, S Li, Y Tang… - Expert Systems with …, 2023 - Elsevier
In many real-world application domains, eg, text categorization and image annotation,
objects naturally belong to more than one class label, giving rise to the multi-label learning …

Manifold regularized discriminative feature selection for multi-label learning

J Zhang, Z Luo, C Li, C Zhou, S Li - Pattern Recognition, 2019 - Elsevier
In multi-label learning, objects are essentially related to multiple semantic meanings, and
the type of data is confronted with the impact of high feature dimensionality simultaneously …

A survey on multi-label feature selection from perspectives of label fusion

W Qian, J Huang, F Xu, W Shu, W Ding - Information Fusion, 2023 - Elsevier
With the rapid advancement of big data technology, high-dimensional datasets comprising
multi-label data have become prevalent in various fields. However, these datasets often …

MFSJMI: Multi-label feature selection considering join mutual information and interaction weight

P Zhang, G Liu, J Song - Pattern Recognition, 2023 - Elsevier
Multi-label feature selection captures a reliable and informative feature subset from high-
dimensional multi-label data, which plays an important role in pattern recognition. In …

Learning common and label-specific features for multi-label classification with correlation information

J Li, P Li, X Hu, K Yu - Pattern recognition, 2022 - Elsevier
In multi-label classification, many existing works only pay attention to the label-specific
features and label correlation while they ignore the common features and instance …

Multi-label feature selection via robust flexible sparse regularization

Y Li, L Hu, W Gao - Pattern Recognition, 2023 - Elsevier
Multi-label feature selection is an efficient technique to deal with the high dimensional multi-
label data by selecting the optimal feature subset. Existing researches have demonstrated …

Improving multi-label classification with missing labels by learning label-specific features

J Huang, F Qin, X Zheng, Z Cheng, Z Yuan, W Zhang… - Information …, 2019 - Elsevier
Existing multi-label learning approaches mainly utilize an identical data representation
composed of all the features in the discrimination of all the labels, and assume that all the …