[HTML][HTML] Deep learning, reinforcement learning, and world models

Y Matsuo, Y LeCun, M Sahani, D Precup, D Silver… - Neural Networks, 2022 - Elsevier
Deep learning (DL) and reinforcement learning (RL) methods seem to be a part of
indispensable factors to achieve human-level or super-human AI systems. On the other …

Advances in medical image analysis with vision transformers: a comprehensive review

R Azad, A Kazerouni, M Heidari, EK Aghdam… - Medical Image …, 2024 - Elsevier
The remarkable performance of the Transformer architecture in natural language processing
has recently also triggered broad interest in Computer Vision. Among other merits …

Text embeddings by weakly-supervised contrastive pre-training

L Wang, N Yang, X Huang, B Jiao, L Yang… - arXiv preprint arXiv …, 2022 - arxiv.org
This paper presents E5, a family of state-of-the-art text embeddings that transfer well to a
wide range of tasks. The model is trained in a contrastive manner with weak supervision …

Decoupled knowledge distillation

B Zhao, Q Cui, R Song, Y Qiu… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
State-of-the-art distillation methods are mainly based on distilling deep features from
intermediate layers, while the significance of logit distillation is greatly overlooked. To …

Clip2scene: Towards label-efficient 3d scene understanding by clip

R Chen, Y Liu, L Kong, X Zhu, Y Ma… - Proceedings of the …, 2023 - openaccess.thecvf.com
Abstract Contrastive Language-Image Pre-training (CLIP) achieves promising results in 2D
zero-shot and few-shot learning. Despite the impressive performance in 2D, applying CLIP …

Generalized out-of-distribution detection: A survey

J Yang, K Zhou, Y Li, Z Liu - International Journal of Computer Vision, 2024 - Springer
Abstract Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of
machine learning systems. For instance, in autonomous driving, we would like the driving …

Selective-supervised contrastive learning with noisy labels

S Li, X Xia, S Ge, T Liu - … of the IEEE/CVF conference on …, 2022 - openaccess.thecvf.com
Deep networks have strong capacities of embedding data into latent representations and
finishing following tasks. However, the capacities largely come from high-quality annotated …

Weak-to-strong generalization: Eliciting strong capabilities with weak supervision

C Burns, P Izmailov, JH Kirchner, B Baker… - arXiv preprint arXiv …, 2023 - arxiv.org
Widely used alignment techniques, such as reinforcement learning from human feedback
(RLHF), rely on the ability of humans to supervise model behavior-for example, to evaluate …

-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

J He, S Erfani, X Ma, J Bailey… - Advances in Neural …, 2021 - proceedings.neurips.cc
Bounding box (bbox) regression is a fundamental task in computer vision. So far, the most
commonly used loss functions for bbox regression are the Intersection over Union (IoU) loss …

Federated learning from pre-trained models: A contrastive learning approach

Y Tan, G Long, J Ma, L Liu, T Zhou… - Advances in neural …, 2022 - proceedings.neurips.cc
Federated Learning (FL) is a machine learning paradigm that allows decentralized clients to
learn collaboratively without sharing their private data. However, excessive computation and …