Large language models for software engineering: A systematic literature review
Large Language Models (LLMs) have significantly impacted numerous domains, including
Software Engineering (SE). Many recent publications have explored LLMs applied to …
Software Engineering (SE). Many recent publications have explored LLMs applied to …
The evolution of distributed systems for graph neural networks and their origin in graph processing and deep learning: A survey
Graph neural networks (GNNs) are an emerging research field. This specialized deep
neural network architecture is capable of processing graph structured data and bridges the …
neural network architecture is capable of processing graph structured data and bridges the …
Signal propagation in complex networks
Signal propagation in complex networks drives epidemics, is responsible for information
going viral, promotes trust and facilitates moral behavior in social groups, enables the …
going viral, promotes trust and facilitates moral behavior in social groups, enables the …
Graph neural networks: foundation, frontiers and applications
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …
recent years. Graph neural networks, also known as deep learning on graphs, graph …
How attentive are graph attention networks?
Graph Attention Networks (GATs) are one of the most popular GNN architectures and are
considered as the state-of-the-art architecture for representation learning with graphs. In …
considered as the state-of-the-art architecture for representation learning with graphs. In …
A survey on deep learning and its applications
Deep learning, a branch of machine learning, is a frontier for artificial intelligence, aiming to
be closer to its primary goal—artificial intelligence. This paper mainly adopts the summary …
be closer to its primary goal—artificial intelligence. This paper mainly adopts the summary …
A comprehensive survey on deep graph representation learning
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …
structured data into low-dimensional dense vectors, which is a fundamental task that has …
A survey on deep semi-supervised learning
Deep semi-supervised learning is a fast-growing field with a range of practical applications.
This paper provides a comprehensive survey on both fundamentals and recent advances in …
This paper provides a comprehensive survey on both fundamentals and recent advances in …
Agentformer: Agent-aware transformers for socio-temporal multi-agent forecasting
Predicting accurate future trajectories of multiple agents is essential for autonomous systems
but is challenging due to the complex interaction between agents and the uncertainty in …
but is challenging due to the complex interaction between agents and the uncertainty in …
Interpretable and generalizable graph learning via stochastic attention mechanism
Interpretable graph learning is in need as many scientific applications depend on learning
models to collect insights from graph-structured data. Previous works mostly focused on …
models to collect insights from graph-structured data. Previous works mostly focused on …