Modified proximal point algorithms involving convex combination technique for solving minimization problems with convergence analysis
In this paper, we are interested in solving minimization problem and common fixed point
problem of finite family consisting asymptotically nonexpansive mappings in Hadamard …
problem of finite family consisting asymptotically nonexpansive mappings in Hadamard …
Riemannian projection-free online learning
Z Hu, G Wang, JD Abernethy - Advances in Neural …, 2024 - proceedings.neurips.cc
The projection operation is a critical component in a wide range of optimization algorithms,
such as online gradient descent (OGD), for enforcing constraints and achieving optimal …
such as online gradient descent (OGD), for enforcing constraints and achieving optimal …
[HTML][HTML] A sausage body is a unique solution for a reverse isoperimetric problem
We consider the class of λ-concave bodies in R n+ 1; that is, convex bodies with the property
that each of their boundary points supports a tangent ball of radius 1/λ that lies locally …
that each of their boundary points supports a tangent ball of radius 1/λ that lies locally …
Hypersurfaces of Constant Higher Order Mean Curvature in
RF De Lima, F Manfio, JP dos Santos - arXiv preprint arXiv:2008.09805, 2020 - arxiv.org
We consider hypersurfaces of products $ M\times\mathbb R $ with constant $ r $-th mean
curvature $ H_r\ge 0$(to be called $ H_r $-hypersurfaces), where $ M $ is an arbitrary …
curvature $ H_r\ge 0$(to be called $ H_r $-hypersurfaces), where $ M $ is an arbitrary …
The Blaschke rolling theorem in Riemannian manifolds of bounded curvature
K Drach - arXiv preprint arXiv:2404.02739, 2024 - arxiv.org
arXiv:2404.02739v1 [math.DG] 3 Apr 2024 Page 1 THE BLASCHKE ROLLING THEOREM IN
RIEMANNIAN MANIFOLDS OF BOUNDED CURVATURE KOSTIANTYN DRACH Abstract. We …
RIEMANNIAN MANIFOLDS OF BOUNDED CURVATURE KOSTIANTYN DRACH Abstract. We …
Closeness to spheres of hypersurfaces with normal curvature bounded below
A Borisenko, K Drach - arXiv preprint arXiv:1212.6485, 2012 - arxiv.org
For a Riemannian manifold $ M^{n+ 1} $ and a compact domain $\Omega\subset M^{n+ 1} $
bounded by a hypersurface $\partial\Omega $ with normal curvature bounded below …
bounded by a hypersurface $\partial\Omega $ with normal curvature bounded below …
On the total curvature of curves in a Minkowski space
AA Borisenko, K Tenenblat - Israel Journal of Mathematics, 2012 - Springer
We consider simple closed curves in a Minkowski space. We give bounds of the total
Minkowski curvature of the curve in terms of the total Euclidean curvature and of normal …
Minkowski curvature of the curve in terms of the total Euclidean curvature and of normal …
О сферичности гиперповерхностей с ограниченной снизу нормальной кривизной
АА Борисенко, КД Драч - Математический сборник, 2013 - mathnet.ru
Для риманова многообразия Mn+ 1 и компактной области Ω⊂ Mn+ 1, граница которой
есть гиперповерхность∂ Ω ограниченной снизу нормальной кривизны, приводятся …
есть гиперповерхность∂ Ω ограниченной снизу нормальной кривизны, приводятся …
Geometric Approach For Majorizing Measures on Hadamard Manifolds
SY Chang - arXiv preprint arXiv:2208.03400, 2022 - arxiv.org
Gaussian processes can be treated as subsets of a standard Hilbert space, however, the
volume size relation between the underlying index space of random processes and its …
volume size relation between the underlying index space of random processes and its …
Asymptotic properties of Hilbert geometry
AA Borisenko, EA Olin - arXiv preprint arXiv:0711.0446, 2007 - arxiv.org
We show that the spheres in Hilbert geometry have the same volume growth entropy as
those in the Lobachevsky space. We give the asymptotic estimates for the ratio of the volume …
those in the Lobachevsky space. We give the asymptotic estimates for the ratio of the volume …