Graph neural networks in recommender systems: a survey

S Wu, F Sun, W Zhang, X Xie, B Cui - ACM Computing Surveys, 2022 - dl.acm.org
With the explosive growth of online information, recommender systems play a key role to
alleviate such information overload. Due to the important application value of recommender …

A review-aware graph contrastive learning framework for recommendation

J Shuai, K Zhang, L Wu, P Sun, R Hong… - Proceedings of the 45th …, 2022 - dl.acm.org
Most modern recommender systems predict users' preferences with two components: user
and item embedding learning, followed by the user-item interaction modeling. By utilizing …

A general survey on attention mechanisms in deep learning

G Brauwers, F Frasincar - IEEE Transactions on Knowledge …, 2021 - ieeexplore.ieee.org
Attention is an important mechanism that can be employed for a variety of deep learning
models across many different domains and tasks. This survey provides an overview of the …

Progressive layered extraction (ple): A novel multi-task learning (mtl) model for personalized recommendations

H Tang, J Liu, M Zhao, X Gong - … of the 14th ACM Conference on …, 2020 - dl.acm.org
Multi-task learning (MTL) has been successfully applied to many recommendation
applications. However, MTL models often suffer from performance degeneration with …

Are we really making much progress? A worrying analysis of recent neural recommendation approaches

M Ferrari Dacrema, P Cremonesi… - Proceedings of the 13th …, 2019 - dl.acm.org
Deep learning techniques have become the method of choice for researchers working on
algorithmic aspects of recommender systems. With the strongly increased interest in …

Deep learning based recommender system: A survey and new perspectives

S Zhang, L Yao, A Sun, Y Tay - ACM computing surveys (CSUR), 2019 - dl.acm.org
With the growing volume of online information, recommender systems have been an
effective strategy to overcome information overload. The utility of recommender systems …

A review of deep learning with special emphasis on architectures, applications and recent trends

S Sengupta, S Basak, P Saikia, S Paul… - Knowledge-Based …, 2020 - Elsevier
Deep learning (DL) has solved a problem that a few years ago was thought to be intractable—
the automatic recognition of patterns in spatial and temporal data with an accuracy superior …

Recommendation system based on deep learning methods: a systematic review and new directions

A Da'u, N Salim - Artificial Intelligence Review, 2020 - Springer
These days, many recommender systems (RS) are utilized for solving information overload
problem in areas such as e-commerce, entertainment, and social media. Although classical …

A troubling analysis of reproducibility and progress in recommender systems research

M Ferrari Dacrema, S Boglio, P Cremonesi… - ACM Transactions on …, 2021 - dl.acm.org
The design of algorithms that generate personalized ranked item lists is a central topic of
research in the field of recommender systems. In the past few years, in particular …

Personalized fashion recommendation with visual explanations based on multimodal attention network: Towards visually explainable recommendation

X Chen, H Chen, H Xu, Y Zhang, Y Cao, Z Qin… - Proceedings of the 42nd …, 2019 - dl.acm.org
Fashion recommendation has attracted increasing attention from both industry and
academic communities. This paper proposes a novel neural architecture for fashion …