Sparks of large audio models: A survey and outlook

S Latif, M Shoukat, F Shamshad, M Usama… - arXiv preprint arXiv …, 2023 - arxiv.org
This survey paper provides a comprehensive overview of the recent advancements and
challenges in applying large language models to the field of audio signal processing. Audio …

[HTML][HTML] Brain-inspired learning in artificial neural networks: a review

S Schmidgall, R Ziaei, J Achterberg, L Kirsch… - APL Machine …, 2024 - pubs.aip.org
Artificial neural networks (ANNs) have emerged as an essential tool in machine learning,
achieving remarkable success across diverse domains, including image and speech …

Spikingjelly: An open-source machine learning infrastructure platform for spike-based intelligence

W Fang, Y Chen, J Ding, Z Yu, T Masquelier… - Science …, 2023 - science.org
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic
chips with high energy efficiency by introducing neural dynamics and spike properties. As …

Spike-driven transformer

M Yao, J Hu, Z Zhou, L Yuan, Y Tian… - Advances in neural …, 2024 - proceedings.neurips.cc
Abstract Spiking Neural Networks (SNNs) provide an energy-efficient deep learning option
due to their unique spike-based event-driven (ie, spike-driven) paradigm. In this paper, we …

Training spiking neural networks using lessons from deep learning

JK Eshraghian, M Ward, EO Neftci… - Proceedings of the …, 2023 - ieeexplore.ieee.org
The brain is the perfect place to look for inspiration to develop more efficient neural
networks. The inner workings of our synapses and neurons provide a glimpse at what the …

A survey of safety and trustworthiness of large language models through the lens of verification and validation

X Huang, W Ruan, W Huang, G Jin, Y Dong… - Artificial Intelligence …, 2024 - Springer
Large language models (LLMs) have exploded a new heatwave of AI for their ability to
engage end-users in human-level conversations with detailed and articulate answers across …

Green edge AI: A contemporary survey

Y Mao, X Yu, K Huang, YJA Zhang… - Proceedings of the …, 2024 - ieeexplore.ieee.org
Artificial intelligence (AI) technologies have emerged as pivotal enablers across a multitude
of industries, including consumer electronics, healthcare, and manufacturing, largely due to …

Spikingbert: Distilling bert to train spiking language models using implicit differentiation

M Bal, A Sengupta - Proceedings of the AAAI conference on artificial …, 2024 - ojs.aaai.org
Large language Models (LLMs), though growing exceedingly powerful, comprises of orders
of magnitude less neurons and synapses than the human brain. However, it requires …

Neuromorphic intermediate representation: A unified instruction set for interoperable brain-inspired computing

JE Pedersen, S Abreu, M Jobst, G Lenz, V Fra… - Nature …, 2024 - nature.com
Spiking neural networks and neuromorphic hardware platforms that simulate neuronal
dynamics are getting wide attention and are being applied to many relevant problems using …

Brain-inspired computing: A systematic survey and future trends

G Li, L Deng, H Tang, G Pan, Y Tian… - Proceedings of the …, 2024 - ieeexplore.ieee.org
Brain-inspired computing (BIC) is an emerging research field that aims to build fundamental
theories, models, hardware architectures, and application systems toward more general …