Artificial intelligence for remote sensing data analysis: A review of challenges and opportunities
Artificial intelligence (AI) plays a growing role in remote sensing (RS). Applications of AI,
particularly machine learning algorithms, range from initial image processing to high-level …
particularly machine learning algorithms, range from initial image processing to high-level …
Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities
Remote sensing image scene classification, which aims at labeling remote sensing images
with a set of semantic categories based on their contents, has broad applications in a range …
with a set of semantic categories based on their contents, has broad applications in a range …
Remote sensing image super-resolution and object detection: Benchmark and state of the art
Y Wang, SMA Bashir, M Khan, Q Ullah, R Wang… - Expert Systems with …, 2022 - Elsevier
For the past two decades, there have been significant efforts to develop methods for object
detection in Remote Sensing (RS) images. In most cases, the datasets for small object …
detection in Remote Sensing (RS) images. In most cases, the datasets for small object …
Hyperspectral image classification—Traditional to deep models: A survey for future prospects
Hyperspectral imaging (HSI) has been extensively utilized in many real-life applications
because it benefits from the detailed spectral information contained in each pixel. Notably …
because it benefits from the detailed spectral information contained in each pixel. Notably …
When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative CNNs
Remote sensing image scene classification is an active and challenging task driven by
many applications. More recently, with the advances of deep learning models especially …
many applications. More recently, with the advances of deep learning models especially …
Deep learning in remote sensing: A comprehensive review and list of resources
Central to the looming paradigm shift toward data-intensive science, machine-learning
techniques are becoming increasingly important. In particular, deep learning has proven to …
techniques are becoming increasingly important. In particular, deep learning has proven to …
Scene classification with recurrent attention of VHR remote sensing images
Scene classification of remote sensing images has drawn great attention because of its wide
applications. In this paper, with the guidance of the human visual system (HVS), we explore …
applications. In this paper, with the guidance of the human visual system (HVS), we explore …
SCViT: A spatial-channel feature preserving vision transformer for remote sensing image scene classification
P Lv, W Wu, Y Zhong, F Du… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Convolutional neural network (CNN)-based methods are widely used in remote sensing
image scene classification and can obtain excellent performances. However, the stacked …
image scene classification and can obtain excellent performances. However, the stacked …
Remote sensing image scene classification: Benchmark and state of the art
Remote sensing image scene classification plays an important role in a wide range of
applications and hence has been receiving remarkable attention. During the past years …
applications and hence has been receiving remarkable attention. During the past years …
Deep recurrent neural networks for hyperspectral image classification
In recent years, vector-based machine learning algorithms, such as random forests, support
vector machines, and 1-D convolutional neural networks, have shown promising results in …
vector machines, and 1-D convolutional neural networks, have shown promising results in …