Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review

AC Hernández-González, L Téllez-Jurado… - Carbohydrate …, 2020 - Elsevier
This review focuses on recently developed alginate injectable hydrogels and alginate
composites for applications in bone tissue regeneration, and it evaluates the alternatives to …

3D bioprinting of cell‐laden hydrogels for improved biological functionality

SM Hull, LG Brunel, SC Heilshorn - Advanced Materials, 2022 - Wiley Online Library
The encapsulation of cells within gel‐phase materials to form bioinks offers distinct
advantages for next‐generation 3D bioprinting. 3D bioprinting has emerged as a promising …

Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks

L Ouyang, JPK Armstrong, Y Lin, JP Wojciechowski… - Science …, 2020 - science.org
A major challenge in three-dimensional (3D) bioprinting is the limited number of bioinks that
fulfill the physicochemical requirements of printing while also providing a desirable …

[HTML][HTML] Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs

N Ashammakhi, S Ahadian, C Xu, H Montazerian… - Materials Today Bio, 2019 - Elsevier
The native tissues are complex structures consisting of different cell types, extracellular
matrix materials, and biomolecules. Traditional tissue engineering strategies have not been …

3D bioprinting: from benches to translational applications

MA Heinrich, W Liu, A Jimenez, J Yang, A Akpek, X Liu… - Small, 2019 - Wiley Online Library
Over the last decades, the fabrication of 3D tissues has become commonplace in tissue
engineering and regenerative medicine. However, conventional 3D biofabrication …

Current developments in 3D bioprinting for tissue and organ regeneration–a review

S Agarwal, S Saha, VK Balla, A Pal, A Barui… - Frontiers in …, 2020 - frontiersin.org
The field of Tissue engineering and regenerative medicine that work toward creating
functional tissue-constructs mimicking native tissue for repair and/or replacement of …

3D extrusion bioprinting

YS Zhang, G Haghiashtiani, T Hübscher… - Nature Reviews …, 2021 - nature.com
Abstract Three-dimensional (3D) bioprinting strategies use computer-aided processes to
enable automated simultaneous spatial patterning of cells and/or biomaterials. These …

Anisotropic structural color particles from colloidal phase separation

H Wang, Y Liu, Z Chen, L Sun, Y Zhao - Science advances, 2020 - science.org
Structural color materials have been studied for decades because of their fascinating
properties. Effects in this area are the trend to develop functional structural color materials …

Chemical insights into bioinks for 3D printing

L Valot, J Martinez, A Mehdi, G Subra - Chemical Society Reviews, 2019 - pubs.rsc.org
3D printing has triggered the acceleration of numerous research areas in health sciences,
which traditionally used cells as starting materials, in particular tissue engineering …

[HTML][HTML] Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration

N Liu, X Ye, B Yao, M Zhao, P Wu, G Liu, D Zhuang… - Bioactive Materials, 2021 - Elsevier
Cardiovascular disease is still one of the leading causes of death in the world, and heart
transplantation is the current major treatment for end-stage cardiovascular diseases …