Advances in adversarial attacks and defenses in computer vision: A survey

N Akhtar, A Mian, N Kardan, M Shah - IEEE Access, 2021 - ieeexplore.ieee.org
Deep Learning is the most widely used tool in the contemporary field of computer vision. Its
ability to accurately solve complex problems is employed in vision research to learn deep …

Adversarial machine learning in image classification: A survey toward the defender's perspective

GR Machado, E Silva, RR Goldschmidt - ACM Computing Surveys …, 2021 - dl.acm.org
Deep Learning algorithms have achieved state-of-the-art performance for Image
Classification. For this reason, they have been used even in security-critical applications …

Self-training with noisy student improves imagenet classification

Q Xie, MT Luong, E Hovy… - Proceedings of the IEEE …, 2020 - openaccess.thecvf.com
We present a simple self-training method that achieves 88.4% top-1 accuracy on ImageNet,
which is 2.0% better than the state-of-the-art model that requires 3.5 B weakly labeled …

Adversarial examples are not bugs, they are features

A Ilyas, S Santurkar, D Tsipras… - Advances in neural …, 2019 - proceedings.neurips.cc
Adversarial examples have attracted significant attention in machine learning, but the
reasons for their existence and pervasiveness remain unclear. We demonstrate that …

A universal law of robustness via isoperimetry

S Bubeck, M Sellke - Advances in Neural Information …, 2021 - proceedings.neurips.cc
Classically, data interpolation with a parametrized model class is possible as long as the
number of parameters is larger than the number of equations to be satisfied. A puzzling …

Unlabeled data improves adversarial robustness

Y Carmon, A Raghunathan, L Schmidt… - Advances in neural …, 2019 - proceedings.neurips.cc
We demonstrate, theoretically and empirically, that adversarial robustness can significantly
benefit from semisupervised learning. Theoretically, we revisit the simple Gaussian model of …

[HTML][HTML] Adversarial attacks and defenses in deep learning

K Ren, T Zheng, Z Qin, X Liu - Engineering, 2020 - Elsevier
With the rapid developments of artificial intelligence (AI) and deep learning (DL) techniques,
it is critical to ensure the security and robustness of the deployed algorithms. Recently, the …

Benchmarking neural network robustness to common corruptions and perturbations

D Hendrycks, T Dietterich - arXiv preprint arXiv:1903.12261, 2019 - arxiv.org
In this paper we establish rigorous benchmarks for image classifier robustness. Our first
benchmark, ImageNet-C, standardizes and expands the corruption robustness topic, while …

Robustness may be at odds with accuracy

D Tsipras, S Santurkar, L Engstrom, A Turner… - arXiv preprint arXiv …, 2018 - arxiv.org
We show that there may exist an inherent tension between the goal of adversarial
robustness and that of standard generalization. Specifically, training robust models may not …

Adversarial examples: Attacks and defenses for deep learning

X Yuan, P He, Q Zhu, X Li - IEEE transactions on neural …, 2019 - ieeexplore.ieee.org
With rapid progress and significant successes in a wide spectrum of applications, deep
learning is being applied in many safety-critical environments. However, deep neural …