Artificial intelligence in histopathology: enhancing cancer research and clinical oncology

A Shmatko, N Ghaffari Laleh, M Gerstung, JN Kather - Nature cancer, 2022 - nature.com
Artificial intelligence (AI) methods have multiplied our capabilities to extract quantitative
information from digital histopathology images. AI is expected to reduce workload for human …

Deep learning in cancer diagnosis, prognosis and treatment selection

KA Tran, O Kondrashova, A Bradley, ED Williams… - Genome Medicine, 2021 - Springer
Deep learning is a subdiscipline of artificial intelligence that uses a machine learning
technique called artificial neural networks to extract patterns and make predictions from …

Federated learning for predicting histological response to neoadjuvant chemotherapy in triple-negative breast cancer

J Ogier du Terrail, A Leopold, C Joly, C Béguier… - Nature medicine, 2023 - nature.com
Triple-negative breast cancer (TNBC) is a rare cancer, characterized by high metastatic
potential and poor prognosis, and has limited treatment options. The current standard of …

Deep learning in histopathology: the path to the clinic

J Van der Laak, G Litjens, F Ciompi - Nature medicine, 2021 - nature.com
Abstract Machine learning techniques have great potential to improve medical diagnostics,
offering ways to improve accuracy, reproducibility and speed, and to ease workloads for …

A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises

SK Zhou, H Greenspan, C Davatzikos… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Since its renaissance, deep learning has been widely used in various medical imaging tasks
and has achieved remarkable success in many medical imaging applications, thereby …

Deep learning in cancer pathology: a new generation of clinical biomarkers

A Echle, NT Rindtorff, TJ Brinker, T Luedde… - British journal of …, 2021 - nature.com
Clinical workflows in oncology rely on predictive and prognostic molecular biomarkers.
However, the growing number of these complex biomarkers tends to increase the cost and …

Artificial intelligence for the prevention and clinical management of hepatocellular carcinoma

J Calderaro, TP Seraphin, T Luedde, TG Simon - Journal of hepatology, 2022 - Elsevier
Hepatocellular carcinoma (HCC) currently represents the fifth most common malignancy and
the third-leading cause of cancer-related death worldwide, with incidence and mortality rates …

Designing deep learning studies in cancer diagnostics

A Kleppe, OJ Skrede, S De Raedt, K Liestøl… - Nature Reviews …, 2021 - nature.com
The number of publications on deep learning for cancer diagnostics is rapidly increasing,
and systems are frequently claimed to perform comparable with or better than clinicians …

Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology

NG Laleh, HS Muti, CML Loeffler, A Echle… - Medical image …, 2022 - Elsevier
Artificial intelligence (AI) can extract visual information from histopathological slides and
yield biological insight and clinical biomarkers. Whole slide images are cut into thousands of …

Artificial intelligence for digital and computational pathology

AH Song, G Jaume, DFK Williamson, MY Lu… - Nature Reviews …, 2023 - nature.com
Advances in digitizing tissue slides and the fast-paced progress in artificial intelligence,
including deep learning, have boosted the field of computational pathology. This field holds …