Transversal Hamilton cycle in hypergraph systems

Y Cheng, J Han, B Wang, G Wang, D Yang - arXiv preprint arXiv …, 2021 - arxiv.org
A $ k $-graph system $\textbf {H}=\{H_i\} _ {i\in [m]} $ is a family of not necessarily distinct $ k
$-graphs on the same $ n $-vertex set $ V $ and a $ k $-graph $ H $ on $ V $ is said to be …

[PDF][PDF] Rainbow loose Hamilton cycles in Dirac hypergraphs

A Kathapurkar, P Morris… - … Mathematics Days 2024, 2024 - dmd2024.web.uah.es
A meta-conjecture of Coulson, Keevash, Perarnau and Yepremyan [6] states that above the
extremal threshold for a given spanning structure in a (hyper-) graph, one can find a rainbow …

Compatible powers of Hamilton cycles in dense graphs

X Cheng, J Hu, D Yang - Journal of Graph Theory, 2022 - Wiley Online Library
The notion of incompatibility system was first proposed by Krivelevich, Lee and Sudakov to
formulate the robustness of Hamiltonicity of Dirac graphs. Given a graph G=(V, E) G=(V,E) …

Transversal Hamilton Cycle in Hypergraph Systems

Y Cheng, J Han, B Wang, G Wang, D Yang - SIAM Journal on Discrete …, 2025 - SIAM
A-graph system is a family of not necessarily distinct-graphs on the same-vertex set, and a-
graph on is said to be-transversal provided that there exists an injection such that for all. We …

[引用][C] Rainbow Hamilton cycle in hypergraph systems

Y Cheng, J Han, B Wang, G Wang, D Yang - arXiv preprint arXiv:2111.07079, 2021